Experimental Study on Heat Transfer Characteristics and Pressure Drops for Water Flowing in Spiral Coil Heat Exchanger

2013 ◽  
Vol 732-733 ◽  
pp. 593-599
Author(s):  
Xiao Yan Zhang ◽  
Fang Fang Jiang ◽  
Shan Yuan Zhao ◽  
Wen Fei Tian ◽  
Xiao Hang Chen

The heat transfer and pressure drop characteristics for water flowing in four spiral coils with different shapes and different sizes were experimental studied. Reynolds number range from 4000 to 9000, volume flow rate range from 200 to 350 L/h and heating power range from 80-350 W. Based on the experimental results, the regularity of Reynolds number and heating power influencing on heat transfer and pressure drop characteristics was analyzed and discussed. The results indicate: the Nu increases with increasing Re, the greatest average heat transfer coefficient appears in the smaller circular spiral coil. The heat transfer coefficients increase with increasing heating power, the greatest average heat transfer coefficient also appears in the smaller circular spiral coil. The pressure drops increase with increasing Re, the pressure drop in big ellipse spiral coil is greatest. The resistance coefficients gradually decrease with increasing Re. The resistance coefficient of small circular spiral coil is always greatest, and the resistance coefficient of big circular spiral coil is smallest.

1994 ◽  
Vol 116 (1) ◽  
pp. 49-54 ◽  
Author(s):  
R. A. Wirtz ◽  
Ashok Mathur

Measurements of the distribution of convective heat transfer over the five exposed faces of a low profile electronic package are described. The package, of square planform and length-to-height ratio, L/a = 6, is part of a regular array of such elements attached to one wall of a low aspect ratio channel. The coolant is air, and experiments are described for the Reynolds number range, 3000<Re<7000. The average heat transfer coefficient for the top face is found to be nearly equal to the overall average heat transfer coefficient for the element. The average heat transfer coefficient for the upstream face and two side faces are higher than the overall average by approximately 30–40 percent and 20–30 percent, respectively while that for the downstream face is 20–30 percent less than the overall average. Furthermore, the distribution in local heat transfer coefficient over the five surfaces of the element is approximately independent of variations in Reynolds number.


2021 ◽  
pp. 80-80
Author(s):  
Hussein Togun ◽  
Raadz Homod ◽  
T Tuqaabdulrazzaq

Turbulent heat transfer and hybrid Al2O3-Cu/nanofluid over vertical double forward facing-stepis numerically conducted. K-? standard model based on finite volume method in two dimensional are applied to investigate the influences of Reynolds number, step height, volume fractions hybrid Al2O3-Cu/nanofluid on thermal performance. In this paper, different step heights for three cases of vertical double FFS are adopted by five different of volume fractions of hybrid (Al2O3-Cu/water) nanofluid varied for 0.1, 0.33, 0.75, 1, and 2, while the Reynolds number different between 10000 to 40000 with temperature is constant. The main findings revealed that rise in local heat transfer coefficients with raised Reynolds number and maximum heat transfer coefficient was noticed at Re=40000. Also rises in heat transfer coefficient detected with increased volume concentrations of hybrid (Al2O3-Cu/water) nanofluid and the maximum heat transfer coefficient found at hybrid Al2O3-Cu/water nanofluid of 2% in compared with others. It?s also found that rise in surface heat transfer coefficient at 1ststep-case 2 was greater than at 1ststep-case 1 and 3 while was higher at 2ndstep-case 3. Average heat transfer coefficient with Reynolds number for all cases are presented in this paper and found that the maximum average heat transfer coefficient was at case 2 compared with case 1 and 3. Gradually increases in skin friction coefficient remarked at 1stand 2ndsteps of the channel and drop in skin friction coefficient was obtained with increased of Reynolds number. Counter of velocity was presented to show the recirculation regions at first and second steps as clarified the enrichment in heat transfer rate. Furthermore, the counter of turbulence kinetic energy contour was displayed to provide demonstration for achieving thermal performance at second step for all cases.


2005 ◽  
Author(s):  
Muhammad M. Rahman ◽  
Shantanu S. Shevade

The study considered the analysis of heat transfer in a composite channel of trapezoidal cross-section fabricated by etching a silicon &lt;100&gt; wafer and bonding that with a slab of gadolinium. Gadolinium is a magnetic material that exhibits high temperature rise during adiabatic magnetization around its transition temperature of 295K. Heat was generated in the substrate by the application of magnetic field. The conjugate heat transfer scenario where part of generated heat is directly dissipated to the working fluid from gadolinium whereas part is conducted through the silicon structure and reaches the working fluid was studied. Water, ammonia, and FC-77 were studied as the possible working fluids. This kind of heat exchanger is being developed for a micro-scale refrigeration system that works with magnetic heating and cooling principle. Equations governing the conservation of mass, momentum, and energy were solved in the fluid region. In the solid region, heat conduction equation was solved. The volumetric heat generation rate due to magnetic heating was included in the gadolinium portion of the composite channel. A grid independence study was carried out to choose the optimum number of elements to mesh the channel geometry and surrounding structure. A thorough investigation for velocity and temperature distribution was performed by varying channel aspect ratio, Reynolds number, and the magnetic field. The thickness of gadolinium slab, spacing between channels in the heat exchanger, and fluid flow rate were varied. To check the validity of simulation, the results were compared with existing results for single material channels. It was found that the peripheral average heat transfer coefficient and Nusselt number is larger near the entrance and decreases downstream because of the development of the thermal boundary layer. With the increase in Reynolds number, the outlet temperature decreased and the average heat transfer coefficient increased.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Payam Rahim Mashaei ◽  
Seyed Mostafa Hosseinalipour ◽  
Mehdi Bahiraei

Numerical simulation is performed to investigate the laminar force convection of Al2O3/water nanofluid in a flow channel with discrete heat sources. The heat sources are placed on the bottom wall of channel which produce much thermal energy that must be evacuated from the system. The remaining surfaces of channel are kept adiabatic to exchange energy between nanofluid and heat sources. In the present study the effects of Reynolds number (, and 1000), particle volume fraction ( (distilled water), 1 and 4%) on the average heat transfer coefficient (h), pressure drop (), and wall temperature () are evaluated. The use of nanofluid can produce an asymmetric velocity along the height of the channel. The results show a maximum value 38% increase in average heat transfer coefficient and 68% increase in pressure drop for all the considered cases when compared to basefluid (i.e., water). It is also observed that the wall temperature decreases remarkably as Re andϕincrease. Finally, thermal-hydraulic performance (η) is evaluated and it is seen that best performance can be obtained for and %.


Author(s):  
С.В. Бородкин ◽  
А.В. Иванов ◽  
И.Л. Батаронов ◽  
А.В. Кретинин

На основе уравнений теплопереноса в движущейся среде и соотношений теплопередачи в термоэлектрическом охладителе приведен сравнительный анализ методик расчета поля температуры в теплонапряженном элементе. Рассмотрены методики на основе: 1) теплового баланса, 2) среднего коэффициента теплоотдачи, 3) дифференциального коэффициента теплоотдачи, 4) прямого расчета в рамках метода конечных элементов. Установлено, что первые две методики не дают адекватного распределения поля температур, но могут быть полезны для определения принципиальной возможности заданного охлаждения с использованием термоэлектрических элементов. Последние две методики позволяют корректно рассчитать температурное поле, но для использования третьей методики необходим дифференциальный коэффициент теплоотдачи, который может быть найден из расчета по четвертой методике. Сделан вывод о необходимости комбинированного использования методик в общем случае. Методы теплового баланса и среднего коэффициента теплоотдачи позволяют определить принципиальную возможность использования термоэлектрического охлаждения конкретного теплонапряженного элемента (ТЭ). Реальные параметры системы охлаждения должны определяться в рамках комбинации методов дифференциального коэффициента теплоотдачи и конечных элементов (МКЭ). Первый из них позволяет определить теплонапряженные области и рассчитать параметры системы охлаждения, которые обеспечивают тепловую разгрузку этих областей. Второй метод используется для проведения численных экспериментов по определению коэффициента теплоотдачи реальной конструкции The article presents on the basis of the equations of heat transfer in a moving medium and the relations of heat transfer in a thermoelectric cooler, a comparative analysis of methods for calculating the temperature field in a heat-stressed element. We considered methods based on: 1) heat balance, 2) average heat transfer coefficient, 3) differential heat transfer coefficient, 4) direct calculation using the finite element method. We established that the first two methods do not provide an adequate distribution of the temperature field but can be useful for determining the principal possibility of a given cooling using thermoelectric elements. The last two methods allow us to correctly calculate the temperature field; but to use the third method, we need a differential heat transfer coefficient, which can be found from the calculation using the fourth method. We made a conclusion about the need for combined use of methods in a general case. The methods of thermal balance and average heat transfer coefficient allow us to determine the principal possibility of using thermoelectric cooling of a specific heat-stressed element. The actual parameters of the cooling system should be determined using a combination of the differential heat transfer coefficient and the finite element method. The first of them allows us to determine the heat-stressed areas and calculate the parameters of the cooling system that provide thermal discharge of these areas. The second method is used to perform numerical experiments to determine the heat transfer coefficient of a real structure


Author(s):  
Jatuporn Kaew-On ◽  
Somchai Wongwises

The evaporation heat transfer coefficients and pressure drops of R-410A and R-134a flowing through a horizontal-aluminium rectangular multiport mini-channel having a hydraulic diameter of 3.48 mm are experimentally investigated. The test runs are done at refrigerant mass fluxes ranging between 200 and 400 kg/m2s. The heat fluxes are between 5 and 14.25 kW/m2, and refrigerant saturation temperatures are between 10 and 30 °C. The effects of the refrigerant vapour quality, mass flux, saturation temperature and imposed heat flux on the measured heat transfer coefficient and pressure drop are investigated. The experimental data show that in the same conditions, the heat transfer coefficients of R-410A are about 20–50% higher than those of R-134a, whereas the pressure drops of R-410A are around 50–100% lower than those of R-134a. The new correlations for the evaporation heat transfer coefficient and pressure drop of R-410A and R-134a in a multiport mini-channel are proposed for practical applications.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012171
Author(s):  
V V Cheverda ◽  
T G Gigola ◽  
P M Somwanshi

Abstract The spatiotemporal distribution of the temperature inside a constantan foil during impacting spray is resolved experimentally in the present work. The received infrared image sequence will be used to find the local and average heat transfer coefficient of the foil. In the future, the results obtained will be used to calculate the heat flux in the region of the contact line of each drop.


Author(s):  
David J. Geb ◽  
Ivan Catton

Non-intrusive measurements of the internal average heat transfer coefficient [1] in a randomly packed bed of spherical particles are made. It is desired to establish accurate results for this simple geometry so that the method used can then be extended to determine the heat transfer characteristics in any porous medium, such as a compact heat exchanger. Under steady, one-dimensional flow the spherical particles are subjected to a step change in volumetric heat generation rate via induction heating. The fluid temperature response is measured. The average heat transfer coefficient is determined by comparing the results of a numerical simulation based on volume averaging theory with the experimental results. More specifically, the average heat transfer coefficient is adjusted within the computational procedure until the predicted values of the fluid outlet temperature match the experimental values. The only information needed is the basic material properties, the flow rate, and the experimental data. The computational procedure alleviates the need for solid and fluid phase temperature measurements, which are difficult to make and can disturb the solid-fluid interaction. Moreover, a simple analysis allows us to proceed without knowledge of the heat generation rate, which is difficult to determine due to challenges associated with calibrating an inductively-coupled, sample specific, heat generation system. The average heat transfer coefficient was determined, and expressed in terms of the Nusselt number, over a Reynolds number range of 20–600. The results compared favorably to the work of Whitaker [2] and Kays and London [3]. The success of this method, in determining the average heat transfer coefficient in a randomly packed bed of spheres, suggests that it can be used to determine the average heat transfer coefficient in other porous media.


Sign in / Sign up

Export Citation Format

Share Document