Study on Automation Control with Water Quality Monitoring System Based on GPRS Technology

2013 ◽  
Vol 738 ◽  
pp. 239-242 ◽  
Author(s):  
Shi Wei Lin ◽  
Yu Wen Zhai

The method of water quality monitoring applied by reservoirs is sampling in the scene and analyzing at the laboratory at present. Based on analyzing key problem of water quality monitoring, automatic water quality monitoring system based on GPRS is provided in this paper. The system structure and principle are introduced. The system collects, transmits and processes water quality parameters automatically, so the production efficiency and the economy benefit are improved greatly.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Yashon O. Ouma ◽  
Clinton O. Okuku ◽  
Evalyne N. Njau

The process of predicting water quality over a catchment area is complex due to the inherently nonlinear interactions between the water quality parameters and their temporal and spatial variability. The empirical, conceptual, and physical distributed models for the simulation of hydrological interactions may not adequately represent the nonlinear dynamics in the process of water quality prediction, especially in watersheds with scarce water quality monitoring networks. To overcome the lack of data in water quality monitoring and prediction, this paper presents an approach based on the feedforward neural network (FNN) model for the simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya. To understand the influence of the contributing factors to the DO variations, the model considered the inputs from the available water quality parameters (WQPs) including discharge, electrical conductivity (EC), pH, turbidity, temperature, total phosphates (TPs), and total nitrates (TNs) as the basin land-use and land-cover (LULC) percentages. The performance of the FNN model is compared with the multiple linear regression (MLR) model. For both FNN and MLR models, the use of the eight water quality parameters yielded the best DO prediction results with respective Pearson correlation coefficient R values of 0.8546 and 0.6199. In the model optimization, EC, TP, TN, pH, and temperature were most significant contributing water quality parameters with 85.5% in DO prediction. For both models, LULC gave the best results with successful prediction of DO at nearly 98% degree of accuracy, with the combination of LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.


Author(s):  
S Gokulanathan ◽  
P Manivasagam ◽  
N Prabu ◽  
T Venkatesh

This paper investigates about water quality monitoring system through a wireless sensor network. Due to the rapid development and urbanization, the quality of water is getting degrade over year by year, and it leads to water-borne diseases, and it creates a bad impact. Water plays a vital role in our human society and India 65% of the drinking water comes from underground sources, so it is mandatory to check the quality of the water. In this model used to test the water samples and through the data it analyses the quality of the water. This paper delivers a power efficient, effective solution in the domain of water quality monitoring it also provides an alarm to a remote user, if there is any deviation of water quality parameters.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Qi Cao ◽  
Gongliang Yu ◽  
Shengjie Sun ◽  
Yong Dou ◽  
Hua Li ◽  
...  

The Haihe River is a typical sluice-controlled river in the north of China. The construction and operation of sluice dams change the flow and other hydrological factors of rivers, which have adverse effects on water, making it difficult to study the characteristics of water quality change and water environment control in northern rivers. In recent years, remote sensing has been widely used in water quality monitoring. However, due to the low signal-to-noise ratio (SNR) and the limitation of instrument resolution, satellite remote sensing is still a challenge to inland water quality monitoring. Ground-based hyperspectral remote sensing has a high temporal-spatial resolution and can be simply fixed in the water edge to achieve real-time continuous detection. A combination of hyperspectral remote sensing devices and BP neural networks is used in the current research to invert water quality parameters. The measured values and remote sensing reflectance of eight water quality parameters (chlorophyll-a (Chl-a), phycocyanin (PC), total suspended sediments (TSS), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH4-N), nitrate-nitrogen (NO3-N), and pH) were modeled and verified. The results show that the performance R2 of the training model is above 80%, and the performance R2 of the verification model is above 70%. In the training model, the highest fitting degree is TN (R2 = 1, RMSE = 0.0012 mg/L), and the lowest fitting degree is PC (R2 = 0.87, RMSE = 0.0011 mg/L). Therefore, the application of hyperspectral remote sensing technology to water quality detection in the Haihe River is a feasible method. The model built in the hyperspectral remote sensing equipment can help decision-makers to easily understand the real-time changes of water quality parameters.


Author(s):  
Ronald Muchini ◽  
Webster Gumindoga ◽  
Sydney Togarepi ◽  
Tarirai Pinias Masarira ◽  
Timothy Dube

Abstract. Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.


2021 ◽  
Vol 13 (9) ◽  
pp. 1847
Author(s):  
Abubakarr S. Mansaray ◽  
Andrew R. Dzialowski ◽  
Meghan E. Martin ◽  
Kevin L. Wagner ◽  
Hamed Gholizadeh ◽  
...  

Agricultural runoff transports sediments and nutrients that deteriorate water quality erratically, posing a challenge to ground-based monitoring. Satellites provide data at spatial-temporal scales that can be used for water quality monitoring. PlanetScope nanosatellites have spatial (3 m) and temporal (daily) resolutions that may help improve water quality monitoring compared to coarser-resolution satellites. This work compared PlanetScope to Landsat-8 and Sentinel-2 in their ability to detect key water quality parameters. Spectral bands of each satellite were regressed against chlorophyll a, turbidity, and Secchi depth data from 13 reservoirs in Oklahoma over three years (2017–2020). We developed significant regression models for each satellite. Landsat-8 and Sentinel-2 explained more variation in chlorophyll a than PlanetScope, likely because they have more spectral bands. PlanetScope and Sentinel-2 explained relatively similar amounts of variations in turbidity and Secchi Disk data, while Landsat-8 explained less variation in these parameters. Since PlanetScope is a commercial satellite, its application may be limited to cases where the application of coarser-resolution satellites is not feasible. We identified scenarios where PS may be more beneficial than Landsat-8 and Sentinel-2. These include measuring water quality parameters that vary daily, in small ponds and narrow coves of reservoirs, and at reservoir edges.


2021 ◽  
Vol 271 ◽  
pp. 02009
Author(s):  
Tan Fenfang

Water is the source of human life. However, a large amount of domestic sewage, industrial wastewater and agricultural wastewater produced in human production and life pollute the surface water, threatening normal production and life of people.In order to grasp the water quality fully, the temperature, PH. turbidity and conductivity sensors are adopted to collect various water quality parameters, and necessary software and hardware design of the on-line water quality' monitoring system is completed to provide a basis for subsequent water quality monitoring in various industries.


2019 ◽  
Author(s):  
Punit Khatri ◽  
Karunesh Kumar Gupta ◽  
Raj Kumar Gupta

Abstract. Drinking or potable water quality monitoring is essential for mankind as it affects the human health directly or indirectly. This work reports a smart sensing platform for potable water quality monitoring. Five water quality parameters (pH, Dissolved Oxygen, Oxidation Reduction Potential, Electrical Conductivity, and Temperature) have been selected to monitor the water quality. The selection of water quality parameters is made based on guidelines of the Central Pollution and Control Board, New Delhi, India. A Graphical User Interface (GUI) is developed to provide an interactive Human Machine Interface for the end user. Python programming language is used for GUI development, data acquisition and for data analysis. Fuzzy computing technique is employed for decision making to categorize the water quality in different classes like bad, poor, satisfactory, good and excellent. The system has been tested for various water resources and results have been displayed.


Author(s):  
Taimi S. Kapalanga ◽  
Zvikomborero Hoko ◽  
Webster Gumindoga ◽  
Loyd Chikwiramakomo

Abstract Frequent and continuous water quality monitoring of Olushandja Dam in Namibia is needed to inform timely decision making. This study was carried out from November 2014 to June 2015 with Landsat 8 reflectance values and field measured water quality data that were used to develop regression analysis-based retrieval algorithms. Water quality parameters considered included turbidity, total suspended solids (TSS), nitrates, ammonia, total nitrogen (TN), total phosphorus (TP) and total algae counts. Results show that turbidity levels exceeded the recommended limits for raw water for potable water treatment while TN and TP values are within acceptable values. Turbidity, TN, and TP and total algae count showed a medium to strong positive linear relationship between Landsat predicted and measured water quality data while TSS showed a weak linear relationship. The regression coefficients between predicted and measured values were: turbidity (R2 = 0.767); TN (R2 = 0.798,); TP (R2 = 0.907); TSS (R2 = 0.284,) and total algae count (R2 = 0.851). Prediction algorithms are generally best fit to derive water quality parameters. Remote sensing is recommended for frequent and continuous monitoring of Olushandja Dam as it has the ability to provide rapid information on the spatio-temporal variability of surface water quality.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3124
Author(s):  
Kuan Huangfu ◽  
Jian Li ◽  
Xinjia Zhang ◽  
Jinping Zhang ◽  
Hao Cui ◽  
...  

In the application of quantitative remote sensing in water quality monitoring, the existence of mixed pixels greatly affects the accuracy of water quality parameter inversion, especially for narrow inland rivers. Improving the image spatial resolution and weakening the interference of mixed pixels in the image are some of the urgent problems to be solved in the study of water quality monitoring of medium- and small-sized inland rivers. We processed Sentinel-2 multispectral images using the super-resolution algorithm and generated a set of 10 m spatial resolution images with basically unchanged reflection characteristics. Both qualitative and quantitative evaluation results show that the super-resolution algorithm can weaken the influence of mixed pixels while maintaining spectral invariance. Before the application of the super-resolution algorithm, the inversion accuracy of water quality parameters in this study were as follows: for NH3-N, the R2 was 0.61, the root mean squared error (RMSE) was 0.177 and the mean absolute percentage error (MAPE) was 29.33%; for Chemical Oxygen Demand (COD), the R2 was 0.26, the RMSE was 0.756 and the MAPE was 4.62%; for Total Phosphorus (TP), the R2 was 0.69, the RMSE was 0.032 and the MAPE was 30.58%. After the application of the super-resolution algorithm, the inversion accuracy of water quality parameters in this study were as follows: for NH3-N, the R2 was 0.67, the RMSE was 0.161 and the MAPE was 25.88%; for COD, the R2 was 0.53, the RMSE was 0.546 and the MAPE was 3.36%; for TP, the R2 was 0.60, the RMSE was 0.034 and the MAPE was 24.28%. Finally, the spatial distribution of NH3-N, COD and TP was obtained by using a machine learning model. The results showed that the application of the super-resolution algorithm can effectively improve the retrieval accuracy of NH3-N, COD and TP, which illustrates the application potential of the super-resolution algorithm in water quality remote sensing quantitative monitoring.


Sign in / Sign up

Export Citation Format

Share Document