Removal of NO from Gas by Corona Discharge with H2O2 Solution Oxidation

2013 ◽  
Vol 742 ◽  
pp. 323-326 ◽  
Author(s):  
Ji Wu Li ◽  
Zhi Peng Tang ◽  
Jie Yu

The effects of the supply voltage, water flow rate, concentration of H2O2absorption and flue gas flow rate on NO removal rate were studied. The chemical reaction mechanism of NO removal was discussed. It was concluded that the NO removal rate increased the increasing of supply voltage, water flow rate and concentration of H2O2, and decreased with the increasing of the flue gas flow rate on the experimental conditions. On the synergy with corona discharge and H2O2solution oxidation, NO removal rate reached 60.2%.

2012 ◽  
Vol 518-523 ◽  
pp. 3191-3194
Author(s):  
Ji Wu Li ◽  
Jie Yu ◽  
Wei Jian Cai

The effects of the supply voltage, water flow rate, concentration of inlet SO2and Fe2+in liquid phase on the desulfurization efficiency were investigated by corona discharge with liquid phase on the condition of DC discharge and pulse discharge. The experimental results showed that the desulfurization efficiency increased with the increasing of the supply voltage, water flow rate, and concentration of Fe2+. However, the desulfurization efficiency was nearly unchanged with the increasing of the initial concentration of SO2. The desulfurization efficiency in pulse discharge was better than that of the DC discharge on the same condition, and the highest desulfurization efficiency could be more than 99%.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xinfu Liu ◽  
Chunhua Liu ◽  
Jianjun Wu

Dynamic characteristics of offshore natural gas hydrate (NGH) dissociation will provide the theoretical basis to analyze technical issues of oceanic hydrate exploitation. A mathematical model is developed to simulate offshore NGH dissociation by depressurization in marine sediments. Different phase combination statuses are involved in the process of NGH dissociation by taking ice melting and water freezing into account. The proposed methodology can analyze the processes of hydrate and water phase transitions, decomposition kinetics and thermodynamics, viscosity and permeability, ice-water phase equilibrium, and natural gas and water production. A set of an experimental system is built and consists of one 3-D visual reactor vessel, one isothermal seawater vessel, one natural gas and water separator, and one data acquisition unit. The experiments on offshore NGH dissociation by depressurization in 3-D marine sediments are carried out, and this methodology is validated against the full-scale experimental data measured. The results show that during the prophase, natural gas flow is preceded by water flow into the production wellbore and natural gas occupies more continuous flow channels than water under a large pressure gradient. Then, the natural gas flow rate begins to decline accompanied by an increase of water production. During the second phase, natural gas flow rate decreases slowly because of the decreased temperature of hydrate-bearing formation and low pressure gradient. The lower the intrinsic permeability in marine sediments, the later the water flow rate reaches the peak production. And the space interval of the production wellbore should be enlarged by an increase of the intrinsic permeability. The stable period of natural gas production enhances, and the water flow rate reduces with the increase of bottom-hole pressure in production wellbores. The main reason is the slow offshore NGH dissociation under the low producing pressure and the restriction of heat conductivity under the low temperature.


2021 ◽  
Vol 18 (10) ◽  
Author(s):  
Chananchida DUMRUANGSRI ◽  
Prukraya PONGYEELA ◽  
Juntima CHUNGSIRIPORN

Biogas upgraded to biomethane can be utilized as a renewable energy source to substitute LPG in households and industry. This study explored biogas upgrading by CO2 removal from 20 - 75 % CO2-N2 simulated biogas mixture. The experimental unit using the microbubble technique combined with the water absorption column was set up and used for CO2 removal from the gas. Microbubble sizes of 20 - 30 µm were generated by a venturi ejector and measured with an automated bubble size measurement. The experiments confirmed that a microbubble with an inline mixer could enhance the effectiveness of the absorption process. The tests demonstrated over 85.80 % removal of CO2 from the simulated biogas by the experimental unit. The effects of various parameters, including the size of venturi ejector, gas flow rate, water flow rate, liquid-gas ratio, and initial concentration of CO2, were investigated. The results revealed that 2 L/min gas flow rate, 15 L/min water flow rate, L/G ratio 7.5, and venturi ejector size 0.50 inches are the optimum conditions. The use of the tube absorber gave much higher CH4 recovery than an absorption column. The appropriate operating conditions gave over 96 % CH4 concentration or less than 4 % CO2 concentration, matching the CH4 purity required by biomethane specifications. The results indicated that the new technique demonstrated in this study can upgrade biogas to biomethane.


2004 ◽  
Vol 30 (6) ◽  
pp. 758-761
Author(s):  
Tomio MIMURA ◽  
Yasuyuki YAGI ◽  
Masaki IIJIMA ◽  
Ryuji YOSIYAMA ◽  
Takahito YONEKAWA

2001 ◽  
Vol 29 (4) ◽  
pp. 592-598 ◽  
Author(s):  
T. Namihira ◽  
S. Tsukamoto ◽  
D. Wang ◽  
H. Hori ◽  
S. Katsuki ◽  
...  

Author(s):  
Mengyuan Zou ◽  
Hongmin Dong ◽  
Zhiping Zhu ◽  
Yuanhang Zhan

Ammonia stripping is a pretreatment method for piggery biogas slurry, and the effectiveness of the method is affected by many factors. Based on the results of single-factor experiments, response surface methodology is adopted to establish a quadratic polynomial mathematical model relating stripping time, pH value and gas flow rate to the average removal rate of ammonia nitrogen to explore the interactions among various influencing factors, obtain optimized combined parameters for ammonia stripping, and carry out experimental verification of the parameters. The results show that when hollow polyhedral packing is adopted under operating conditions including a stripping time of 90 min, pH value of 11, gas flow rate of 28 m3/h, gas–liquid ratio of 2000 and temperature of 30 °C, the average removal rate of ammonia nitrogen in biogas slurry can reach approximately 73%. The experimental value is only 4.2% different from the predicted value, which indicates that analysis on the interaction among factors influencing ammonia stripping of biogas slurry and parameter optimization of the regression model are accurate and effective.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ziyi Qu ◽  
Li Zhang ◽  
Yunfei Yan ◽  
Shunxiang Ju

Hollow fiber membrane contactor is a new, highly efficient, and the most promising technology for CO2absorption in flue gas. There is still SO2that exists in the flue gas after desulfurization tower of power plant. This paper studied the influence of SO2on CO2absorption characteristic in flue gas by hollow fiber membrane contactor with absorbent of EDA, EDA + MEA (0.6 : 0.4), and EDA + MEA + PZ (0.4 : 0.4 : 0.2). The influences of SO2concentration, cycle absorption and desorption characteristic of absorbent, absorbent concentration, and liquid-gas flow rate ratio are studied to analyze the influence of SO2on CO2absorption characteristic. The appropriate absorbent composition ratio and appropriate parameter range that can inhibit the influence of SO2are proposed by studying the hybrid sorbent with activating agent, appropriate absorbent concentration, and ratio of liquid-gas flow rate. Among the three kinds of absorbents, EDA + MEA + PZ (0.4 : 0.4 : 0.2) had the best tolerance ability to SO2and the highest efficiency. With comprehensive consideration of CO2removal efficiency and operating cost, under the condition of 1000 ppm SO2, the appropriate concentration and liquid-gas flow rate ratio of EDA, EDA + MEA, and EDA + MEA + PZ are proposed.


2013 ◽  
Vol 423-426 ◽  
pp. 225-229
Author(s):  
Chun Jie Yang ◽  
Fu Ping Tang ◽  
Tao He

A physical model was established according to the similarity theory to simulate the real 175t RH-TB vacuum refining device. Liquid steel is simulated by Nacl solution, the air is approximate argon and polypropylene simulate inclusions. The influence regularity of treatment time ,lift gas flow rate and submersion depth of snorkels on the inclusions removal rate have been discussed, the optimal values for each influence factor have been found and can be used in optimizing the refining technology.


2012 ◽  
Vol 16 (5) ◽  
pp. 1544-1548
Author(s):  
Sheng Liu ◽  
Ying-Li Hao

Cold state experiment and numerical simulation are carried out to study particle deposition process. The deposit mass can be divided into two parts, one directly collides with the wall and the other is brought by the backflow. The deposit flux increases with the increase of gas flow rate or water flow rate or both, and decreases with the increase of the central channel gas flow rate.


2014 ◽  
Vol 884-885 ◽  
pp. 261-265
Author(s):  
Bao Lin Li ◽  
Ming Yu Li ◽  
Hai Hao Liu ◽  
Gang Cao ◽  
Gang Ren ◽  
...  

This paper presented a new method of absorption-oxidation-reduction which used ferrous sulfate solution as absorbent, oxygen as oxidizer and urea as reducer to remove NOX from flue gas based on the properties of Fe2+, NO, [Fe (NO)]2+ and urea. These properties included that Fe2+ and NO could produce [Fe (NO)]2+, furthermore [Fe (NO)]2+ was easy to be oxidized by O2, as well as urea can reduce HNO2 and HNO3 in the absorption liquid. This research was to discuss its absorption and removal mechanism with the influence of the initial urea concentration, pH value, initial NOX concentration and gas flow rate on the NOX removal efficiency. The results showed that the removal efficiency of NOX would increase when the initial concentration of urea and NOX increased, while the pH value and gas flow rate decreased.


Sign in / Sign up

Export Citation Format

Share Document