Design and Simulation of Energy Efficient Fixed Frequency Pulse Controlled Power Converter for Induction Melting Application

2013 ◽  
Vol 768 ◽  
pp. 404-410
Author(s):  
Nagarajan Booma ◽  
S. Rama Reddy ◽  
M. Beryl

This paper discusses the design and simulation of pulse width modulated based circuit for induction melting application. This high frequency inverter topology have the practical advantages of energy saving, clean environment, high output power due to low switching losses, less electromagnetic noise and low total harmonic distortion. This two stage power converter has single phase full bridge rectifier, DC filter, zero voltage switching pulse width modulation controlled high frequency inverter. In this work, the steady state operation and control strategy of pulse width modulated high frequency inverter is analyzed. In order to achieve energy efficiency switching losses are reduced by operating the inverter above resonance frequency. Input side supply harmonics is also reduced using EMI filter. The simulation of the designed high frequency power supply is carried out at a frequency of 20 kHz using MATLAB simulink tool. Simulation results proof the energy saving due to reduction in switching losses of the presented control strategy and reduction in harmonic distortion of the presented power supply for induction heating load.

2018 ◽  
Vol 17 (3) ◽  
pp. 89-102
Author(s):  
Md. Saiful Islam ◽  
Md. Rifat-Ul-Karim Shovon ◽  
Abdul Goffar Khan

This paper presents a comparative study of the application of Thyristor versus IGBT in AC-DC controlled power converter. Both simulation and practical experiment have been carried out to test the relationship between the average output voltage (Vdc) with firing angle (α, for Thyristor) and triggering pulse width (, for IGBT). Also the total harmonic distortion (THD) has been observed in both the cases. It is observed that IGBT based power converter introduces more harmonics in the system, in spite of more symmetrical output voltage wave shape.


2013 ◽  
Vol 772 ◽  
pp. 443-447
Author(s):  
Yi Wang Wang

The inverter power supply system has strong nonlinearity and parameter variability, especially in the non-linear loads, conventional control technology is difficult to achieve effective control and get the ideal control effect. Aiming at the control requirements of single-phase high-frequency induction heating inverter supply power control applications, uses a novel multiple and composite control technologies to achieve rapid power modulation control of inverter. The components and design principles of proposed control system were introduced in detail. The inverter power system model based on the new control strategy has been built, and inverter prototype used for high-frequency induction heating was designed. The experimental results show that the proposed control method to obtain better dynamic characteristics than the conventional control technologies, and has good advantages of system steady-state accuracy, robustness and control qualities, which has wide range of application.


2012 ◽  
Vol 546-547 ◽  
pp. 1050-1055
Author(s):  
Bao Lian Liu ◽  
De Fei Jin

A space vector pulse-width modulation (SVPWM) strategy was developed to solve the failure of traditional SVPWM. A two-phase modulation method is adopted basing on the analyses of traditional SVPWM to select the null switching state in each sector according to the power factor angle. As a result, when the current is crossing zero, the corresponding phase does not commute and dead-time compensation is avoided; and when the current is nearing the peak, the corresponding phase also don’t commute, which leads to lower switching losses. The simulation and experimental results validate that the proposed strategy can effectively improve the current wave, minimize the current distortion and reduce the switching losses. Furthermore, the algorithm is easy to implement.


Sign in / Sign up

Export Citation Format

Share Document