Research on Valid Serve Life of Pavement Marking in Urban Area

2013 ◽  
Vol 779-780 ◽  
pp. 578-583
Author(s):  
Lei Peng ◽  
Wen Ying Su ◽  
Zhen Hua Wang

A two year study of evaluate the valid service life of durable pavement markings on urban roads was conducted in Beijing as a pilot field study of Chinese national transportation product evaluation program and minimum retro-reflectivity requirements standards and road maintenance standards. 34 pavement marking lines including edge line, arrow, skip line, crossing line and stop line were installed on expressway and intersection. Marking materials included thermoplastic with glass beads, preformed thermoplastic tape with glass beads and preformed rubber based pavement tape. Service life evaluation was base on minimum value of durability and retro-reflectivity. Retro-reflectivity attenuation varies at different locations (express way, intersection), different marking functions (e.g., skip line, edge line) and different materials (thermoplastic or tape). It was found the more accumulated traffic, the more loss of retro-reflectivity. The most loss of retro-reflectivity happens at stop lines, skip line and cross line are better, arrows are less, edge line is the best. Cleanliness factor are also considered, retro-reflectivity significantly rises after cleaned. A maintenance schedule for different markings was given in this paper. Stop line, skip line and crossing line are suggested to be replaced every 12 months; arrow and edge line are suggested to be replaced every 24 months with a special concern of cleanliness at urban area.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1737
Author(s):  
Ane Dalsnes Storsæter ◽  
Kelly Pitera ◽  
Edward McCormack

Pavement markings are used to convey positioning information to both humans and automated driving systems. As automated driving is increasingly being adopted to support safety, it is important to understand how successfully sensor systems can interpret these markings. In this effort, an in-vehicle lane departure warning system was compared to data collected simultaneously from an externally mounted mobile retroreflectometer. The test, performed over 200 km of driving on three different routes in variable lighting conditions and road classes found that, depending on conditions, the retroreflectometer could predict whether the car’s lane departure systems would detect markings in 92% to 98% of cases. The test demonstrated that automated driving systems can be used to monitor the state of pavement markings and can provide input on how to design and maintain road infrastructure to support automated driving features. Since data about the condition of lane marking from multiple lane departure warning systems (crowd-sourced data) can provide input into the pavement marking management systems operated by many road owners, these findings also indicate that these automated driving sensors have an important role in enhancing the maintenance of pavement markings.


2021 ◽  
Vol 14 ◽  
pp. 117862212098872
Author(s):  
María Fernández-Raga ◽  
Iván García-Díez ◽  
Julian Campo ◽  
Julio Viejo ◽  
Covadonga Palencia

Water is one of the most important erosive agents in roadside hillslopes. When these are built with ineffective drainage systems, erosion occurs, reducing road’s service life. However, these systems are not receiving the appropriate importance, given their strategic value. Therefore, a new drainage system called ‘branched’ is proposed in this study. Its technical and economic feasibility is compared with those of the traditional system, which consists of drainages with lines that follow maximum hillslope, to assess differences in relation to erosion, construction and maintenance costs, and service life. Different parameters were analysed, such as the average velocity of water (mm−1) running through the channels, its average specific energy (kJ), and its drag force (N). A scale model was constructed and used to test these factors before implementing it in natural terrain for testing it under field conditions. According to the theoretical and measured results, these factors were lower in the branched drainage than in the traditional one (from 24% to 34% in speed, from 37% to 60% in energy, and from 51% to 73% in force). The service life of hillslopes with a branched system of up to 0.5 m high and 1:2 grade is significantly longer than in those with a traditional drainage. Although the initial economic expense for the construction of the branched system is higher (€3534/m3 as opposed to €2930/m3 for the traditional one), its maintenance cost will be lower than the traditional one (€1230/m3 per year for the branched one as opposed to €1332/m3 per year for the traditional one). Consequently, under our experimental conditions, the proposed drainage will be profitable from the eighth year of construction, saving on the road maintenance in the following 15 years of service life.


2021 ◽  
Vol 6 (2) ◽  
pp. 18
Author(s):  
Alireza Sassani ◽  
Omar Smadi ◽  
Neal Hawkins

Pavement markings are essential elements of transportation infrastructure with critical impacts on safety and mobility. They provide road users with the necessary information to adjust driving behavior or make calculated decisions about commuting. The visibility of pavement markings for drivers can be the boundary between a safe trip and a disastrous accident. Consequently, transportation agencies at the local or national levels allocate sizeable budgets to upkeep the pavement markings under their jurisdiction. Infrastructure asset management systems (IAMS) are often biased toward high-capital-cost assets such as pavements and bridges, not providing structured asset management (AM) plans for low-cost assets such as pavement markings. However, recent advances in transportation asset management (TAM) have promoted an integrated approach involving the pavement marking management system (PMMS). A PMMS brings all data items and processes under a comprehensive AM plan and enables managing pavement markings more efficiently. Pavement marking operations depend on location, conditions, and AM policies, highly diversifying the pavement marking management practices among agencies and making it difficult to create a holistic image of the system. Most of the available resources for pavement marking management focus on practices instead of strategies. Therefore, there is a lack of comprehensive guidelines and model frameworks for developing PMMS. This study utilizes the existing body of knowledge to build a guideline for developing and implementing PMMS. First, by adapting the core AM concepts to pavement marking management, a model framework for PMMS is created, and the building blocks and elements of the framework are introduced. Then, the caveats and practical points in PMMS implementation are discussed based on the US transportation agencies’ experiences and the relevant literature. This guideline is aspired to facilitate PMMS development for the agencies and pave the way for future pavement marking management tools and databases.


2014 ◽  
Vol 92 ◽  
pp. 127-132
Author(s):  
Nurcan Seyhan ◽  
Aslı Tayçu ◽  
Mehmet Gula ◽  
Arzu Eker ◽  
Kagan Kayaci ◽  
...  

In this study, the effect of alternative additives on the properties spred diameter, setting time, bending strength and water absorption of sanitaryware plaster moulds was investigated. The plaster was partially replaced by the alternative additives such as perlite, diatomite and glass beads. Microstructural features of the resultant compositions were determined by scanning electron microscope (SEM). Finally, represantative moulds were produced and their performance was investigated under industrial conditions. It was observed that perlite and diatomite addition deteriorated the strength of plaster moulds and there was no noticeable effect of these additives on casting performance of the plaster moulds. Morever, the presence of glass beads in plaster decreased weight of the moulds without deterioration of moulds service life.


Author(s):  
Bouzid Choubane ◽  
Joshua Sevearance ◽  
Charles Holzschuher ◽  
James Fletcher ◽  
Chieh (Ross) Wang

The visibility of pavement markings is an important aspect of a safe transportation system as the markings convey vital roadway warnings and guidance information to the traveling public. Therefore, it is beneficial to maintain acceptable visibility levels of markings on pavements under all weather and lighting conditions. To ensure the intended in-service visibility level is adequately maintained, the reflectivity must be monitored and quantified accordingly. Historically, visibility or retroreflectivity of in-service pavement markings has been measured with handheld devices and visual inspections. However, visual surveys are considered subjective and the handheld measurements are tedious and potentially hazardous. Consequently, the Florida Department of Transportation (FDOT) has focused on the use of a non-contact technology capable of assessing pavement markings continuously at highway speeds with improved safety and efficiency. The use of mobile technology for measuring reflectivity has allowed FDOT to develop and, subsequently, implement a Pavement Marking Management System (PMMS) to improve the safety and nighttime visibility of its roadways. Implementation of such a system provides an efficient and less subjective methodology to identify conditions that are detrimental to roadway safety, and strategize mitigating solutions including the selection of appropriate materials and application techniques. The system will ultimately result in an effective use of state funds while ensuring the safety of the traveling public. This paper presents a description of the Florida Pavement Markings Management System and its subsequent implementation including FDOT’s effort to ensure the quality, consistency, repeatability, and accessibility of statewide pavement marking retroreflectivity data.


Author(s):  
Timothy P. Barrette ◽  
Adam M. Pike

Raised retroreflective pavement markers (RRPMs) are commonly used to provide nighttime delineation of roadways. Although RRPMs are visible during dry conditions, they provide their greatest benefit during wet-night conditions, when typical pavement markings become flooded and lose their retroreflectivite properties. Naturally, the retroreflectivity of RRPMs degrades over time as a result of traffic, ultraviolet light, precipitation, and roadway maintenance activities. Subsequently, it is necessary to examine the relationship between driver performance and the condition of the RRPMs. To assess visibility relative to RRPM condition, study participants rode in the passenger seat of a vehicle operated by a member of the research team, traveling at approximately 15 mph, for two laps around a closed course. Throughout each lap of the course, nine treatments consisting of RRPMs or preformed pavement marking tape of various retroreflectivity levels diverged from a center line to either the right or left. Participants indicated when they could tell which direction the treatment diverged, which was recorded using a GPS unit. A generalized linear model was estimated on a dataset constructed by pairing the observed distances from various treatments with demographic information about each participant. The analysis indicates the distance at which a particular treatment would be visible, which can then be converted to preview time to assess treatment adequacy for a variety of speeds. The RRPM treatments generally provided adequate preview time for older drivers based on the extant literature; however, the preformed pavement marking tape was less adequate at higher speeds and under overhead lighting.


Author(s):  
Ronald B. Gibbons ◽  
Brian Williams ◽  
Benjamin Cottrell

This paper describes the visibility experiment conducted as part of a research effort to establish the durability of pavement markings in an on-road installation. Six marking technologies were installed on a portion of Route 460 in Blacksburg, Virginia. A human factors experiment in natural rain conditions was performed to establish the visibility needs of the driver. The retroreflectivity of the markings was measured at intervals of 2 to 5 months, with six measurements over the course of 23 months (these data are discussed in a separate paper). Previous research suggested that a minimum retroreflectivity of 150 mcd/m2/lx should be maintained to meet drivers' visibility needs. As part of this research, a human factors experiment was conducted to test the validity of this recommendation. The distance at which participants could detect the end of a pavement marking was measured as well as the retroreflectivity of the marking at those points. The relationship of detection distance and retroreflectivity found in this study suggests that as retroreflectivity increases beyond 150 mcd/m2/lx, there are diminishing returns on detection distance. This finding suggests that the recommended minimum is appropriate for providing increased visibility for drivers, while keeping retroreflectivity requirements at a reasonable level for marking manufacturers.


Sign in / Sign up

Export Citation Format

Share Document