Modeling and Simulations of Pd/n-ZnO Schottky Diode and its Comparison with Measurements

2009 ◽  
Vol 79-82 ◽  
pp. 1317-1320 ◽  
Author(s):  
S Faraz ◽  
Haida Noor ◽  
M. Asghar ◽  
Magnus Willander ◽  
Qamar-ul Wahab

Modeling of Pd/ZnO Schottky diode has been performed together with a set of simulations to investigate its behavior in current-voltage characteristics. The diode was first fabricated and then the simulations were performed to match the IV curves to investigate the possible defects and their states in the bandgap. The doping concentration measured by capacitance-voltage is 3.4 x 1017 cm-3. The Schottky diode is simulated at room temperature and the effective barrier height is determined from current voltage characteristics both by measurements and simulations and it was found to be 0.68eV. The ideality factor obtained from simulated results is 1.06-2.04 which indicates that the transport mechanism is thermionic. It was found that the recombination current in the depletion region is responsible for deviation of experimental values from the ideal thermionic model deployed by the simulator.

2013 ◽  
Vol 717 ◽  
pp. 113-116
Author(s):  
Sani Klinsanit ◽  
Itsara Srithanachai ◽  
Surada Ueamanapong ◽  
Sunya Khunkhao ◽  
Budsara Nararug ◽  
...  

The effect of soft X-ray irradiation to the Schottky diode properties was analyzed in this paper. The built-in voltage, leakage current, and work function of Schottky diode were investigated. The current-voltage characteristics of the Schottky diode are measured at room temperature. After irradiation at 70 keV for 55 seconds the forward current and leakage current are increase slightly. On the other hand, the built-in voltage is decrease from the initial value about 0.12 V. Consequently, this method can cause the Schottky diode has low power consumption. The results show that soft X-ray can improve the characteristics of Schottky diode.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012065
Author(s):  
S V Sedykh ◽  
S B Rybalka ◽  
A A Demidov ◽  
E A Kulchenkov

Abstract The forward and reverse current–voltage characteristics of Ti/Al/4H-SiC Schottky diode type DDSH411A91 in modern small-sized (SOT-89) type metal-polymeric package have been obtained. In forward direction (current up to 2 A) on the basis of analysis it is shown that Schottky diode corresponds to the "ideal" diode with ideality factor n=1.12 and effective Schottky barrier height φB =1.2 eV. It is shown that reverse current-voltage characteristics (breakdown voltage 1200 V) can be well approximated by mechanism of field dependence of barrier height lowering by the presence of the intermediate layer in the form of oxide on the 4H-SiC surface.


2017 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
S.B. Rybalka ◽  
E.Yu. Krayushkina ◽  
A.A. Demidov ◽  
O.A. Shishkina ◽  
B.P. Surin

Forward current-voltage characteristics of 4H-SiC Schottky diode with Ni Schottky contact have been simulated based on in the physical analytical models based on Poisson’s equation, drift-diffusion and continuity equations. On the base of analysis of current-voltage characteristics in terms of classical thermionic emission theory it is established that the proposed simulation model of Schottky diode corresponds to the “ideal” diode with average ideality factor n»1.1 at low temperature ~300 K. It is determined that effective Schottky barrier height equals 1.1 eV for Ni/4H-SiC Schottky diode.


2002 ◽  
Vol 719 ◽  
Author(s):  
Galina Khlyap

AbstractRoom-temperature electric investigations carried out in CO2-laser irradiated ZnCdHgTe epifilms revealed current-voltage and capacitance-voltage dependencies typical for the metal-semiconductor barrier structure. The epilayer surface studies had demonstrated that the cell-like relief has replaced the initial tessellated structure observed on the as-grown samples. The detailed numerical analysis of the experimental measurements and morphological investigations of the film surface showed that the boundaries of the cells formed under the laser irradiation are appeared as the regions of accumulation of derived charged defects of different type of conductivity supplying free charge carriers under the applied electric field.


2013 ◽  
Vol 415 ◽  
pp. 77-81 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Hassan Sayyad ◽  
Fazal Wahab ◽  
Dil Nawaz Khan ◽  
Fakhra Aziz

2004 ◽  
Vol 85 (1) ◽  
pp. 115-117 ◽  
Author(s):  
Wenping Hu ◽  
Hiroshi Nakashima ◽  
Kazuaki Furukawa ◽  
Yoshiaki Kashimura ◽  
Katsuhiro Ajito ◽  
...  

2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document