Research on the Taxonomy of Activity Recognition Based on Inertial Sensors

2013 ◽  
Vol 823 ◽  
pp. 107-110
Author(s):  
Zi Ming Xiao ◽  
Yu Long Shi ◽  
Yong Xue ◽  
Feng Hu ◽  
Yu Chuan Wu

This paper introduces some techniques on classifying human activities with inertial sensors and point out a number of characteristics of classification algorithm. The goal of human activity recognition is to automatically analyze ongoing activities from people who wear inertial sensor. Initially, we provide introduce information about the activity recognition, such as the way of acquisition, sensors used and the steps of activity recognition using machine learning algorithm. Next, we focus on the classification techniques together with a detailed taxonomy, and the classification techniques implemented and compared in this study are: Decision Tree Algorithm (DTA), Bayesian Decision Making (BDM), Support Vector Machines (SVM), Artificial Neural Networks (ANN) and Hidden Markov Model (HMM)[. Finally, we make a summarize about it investigate the directions for future research.

2021 ◽  
Vol 5 (6) ◽  
pp. 1193-1206
Author(s):  
Humaira Nur Pradani ◽  
Faizal Mahananto

Human activity recognition (HAR) is one of the topics that is being widely researched because of its diverse implementation in various fields such as health, construction, and UI / UX. As MEMS (Micro Electro Mechanical Systems) evolves, HAR data acquisition can be done more easily and efficiently using inertial sensors. Inertial sensor data processing for HAR requires a series of processes and a variety of techniques. This literature study aims to summarize the various approaches that have been used in existing research in building the HAR model. Published articles are collected from ScienceDirect, IEEE Xplore, and MDPI over the past five years (2017-2021). From the 38 studies identified, information extracted are the overview of the areas of HAR implementation, data acquisition, public datasets, pre-process methods, feature extraction approaches, feature selection methods, classification models, training scenarios, model performance, and research challenges in this topic. The analysis showed that there is still room to improve the performance of the HAR model. Therefore, future research on the topic of HAR using inertial sensors can focus on extracting and selecting more optimal features, considering the robustness level of the model, increasing the complexity of classified activities, and balancing accuracy with computation time.  


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4132 ◽  
Author(s):  
Ku Ku Abd. Rahim ◽  
I. Elamvazuthi ◽  
Lila Izhar ◽  
Genci Capi

Increasing interest in analyzing human gait using various wearable sensors, which is known as Human Activity Recognition (HAR), can be found in recent research. Sensors such as accelerometers and gyroscopes are widely used in HAR. Recently, high interest has been shown in the use of wearable sensors in numerous applications such as rehabilitation, computer games, animation, filmmaking, and biomechanics. In this paper, classification of human daily activities using Ensemble Methods based on data acquired from smartphone inertial sensors involving about 30 subjects with six different activities is discussed. The six daily activities are walking, walking upstairs, walking downstairs, sitting, standing and lying. It involved three stages of activity recognition; namely, data signal processing (filtering and segmentation), feature extraction and classification. Five types of ensemble classifiers utilized are Bagging, Adaboost, Rotation forest, Ensembles of nested dichotomies (END) and Random subspace. These ensemble classifiers employed Support vector machine (SVM) and Random forest (RF) as the base learners of the ensemble classifiers. The data classification is evaluated with the holdout and 10-fold cross-validation evaluation methods. The performance of each human daily activity was measured in terms of precision, recall, F-measure, and receiver operating characteristic (ROC) curve. In addition, the performance is also measured based on the comparison of overall accuracy rate of classification between different ensemble classifiers and base learners. It was observed that overall, SVM produced better accuracy rate with 99.22% compared to RF with 97.91% based on a random subspace ensemble classifier.


Author(s):  
A. B.M. Shawkat Ali

From the beginning, machine learning methodology, which is the origin of artificial intelligence, has been rapidly spreading in the different research communities with successful outcomes. This chapter aims to introduce for system analysers and designers a comparatively new statistical supervised machine learning algorithm called support vector machine (SVM). We explain two useful areas of SVM, that is, classification and regression, with basic mathematical formulation and simple demonstration to make easy the understanding of SVM. Prospects and challenges of future research in this emerging area are also described. Future research of SVM will provide improved and quality access to the users. Therefore, developing an automated SVM system with state-of-the-art technologies is of paramount importance, and hence, this chapter will link up an important step in the system analysis and design perspective to this evolving research arena.


Proceedings ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 60 ◽  
Author(s):  
Irvin Hussein Lopez-Nava ◽  
Matias Garcia-Constantino ◽  
Jesus Favela

Activity recognition is an important task in many fields, such as ambient intelligence, pervasive healthcare, and surveillance. In particular, the recognition of human gait can be useful to identify the characteristics of the places or physical spaces, such as whether the person is walking on level ground or walking down stairs in which people move. For example, ascending or descending stairs can be a risky activity for older adults because of a possible fall, which can have more severe consequences than if it occurred on a flat surface. While portable and wearable devices have been widely used to detect Activities of Daily Living (ADLs), few research works in the literature have focused on characterizing only actions of human gait. In the present study, a method for recognizing gait activities using acceleration data obtained from a smartphone and a wearable inertial sensor placed on the ankle of people is introduced. The acceleration signals were segmented based on the automatic detection of strides, also called gait cycles. Subsequently, a feature vector of the segmented signals was extracted, which was used to train four classifiers using the Naive Bayes, C4.5, Support Vector Machines, and K-Nearest Neighbors algorithms. Data was collected from seven young subjects who performed five gait activities: (i) going down an incline, (ii) going up an incline, (iii) walking on level ground, (iv) going down stairs, and (v) going up stairs. The results demonstrate the viability of using the proposed method and technologies in ambient assisted living contexts.


2020 ◽  
Vol 12 (4) ◽  
pp. 297-308
Author(s):  
Chris H. Miller ◽  
Matthew D. Sacchet ◽  
Ian H. Gotlib

Support vector machines (SVMs) are being used increasingly in affective science as a data-driven classification method and feature reduction technique. Whereas traditional statistical methods typically compare group averages on selected variables, SVMs use a predictive algorithm to learn multivariate patterns that optimally discriminate between groups. In this review, we provide a framework for understanding the methods of SVM-based analyses and summarize the findings of seminal studies that use SVMs for classification or data reduction in the behavioral and neural study of emotion and affective disorders. We conclude by discussing promising directions and potential applications of SVMs in future research in affective science.


2019 ◽  
Vol 49 (11) ◽  
pp. 2230-2241 ◽  
Author(s):  
Jie Xu ◽  
Chen Xu ◽  
Bin Zou ◽  
Yuan Yan Tang ◽  
Jiangtao Peng ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 7365
Author(s):  
Taejung Park ◽  
Chayoung Kim

The current study seeks to identify variables that affect the career decision-making of high school graduates with respect to the choice of university (re-)entrance in South Korea where education has great importance as a tool for self-cultivation and social prestige. For pattern recognition, we adopted a support vector machine with recursive feature elimination (SVM-RFE) with a big-data of survey of Korean college candidates. Based on the SVM-RFE analysis results, new enrollers were mostly affected by the mesosystems of interactions with parents, while re-enrollers were affected by the macrosystems of social awareness as well as individual estimates of talent and aptitude of individual systems. By predicting the variables that affect the high school graduates’ preparation for university re-entrance, some survey questions provide information on why they make the university choice based on interactions with their parents or acquaintances. Along with these empirical results, implications for future research are also presented.


Sign in / Sign up

Export Citation Format

Share Document