Study of Ultrasonically Assisted Internal Grinding of Small Holes: Effect of Grain Size of cBN Grinding Wheel

2009 ◽  
Vol 83-86 ◽  
pp. 1002-1008 ◽  
Author(s):  
Mitsuyoshi Nomura ◽  
Yong Bo Wu ◽  
Tsunemoto Kuriyagawa ◽  
Takahiro Kawashima ◽  
Takayuki Shibata

This study aims to develop an ultrasonically assisted grinding technology for precision internal grinding of a small hole measuring several millimeters in diameter, such as those formed in a fuel injector for an automotive engine. In a previous work, an experimental apparatus mainly composed of an ultrasonic vibration spindle was designed and constructed, and grinding experiments were carried out. The previous investigation found that applying ultrasonic vibration to the wheel decreased the normal and tangential grinding forces, respectively, and improved the surface roughness in surface grinding. The purpose of this paper is to examine the effect of ultrasonic vibration on grinding force and surface roughness in internal grinding when the grain sizes of small cBN grinding wheel are changed. The experimental results indicate that applying ultrasonic vibration to the wheel decreases the normal and tangential grinding forces by more than 83 % and 80 %, respectively, and improves the surface roughness by as much as 62 % while the wheel grain size is changed. In addition, over the range of grinding conditions employed in this paper, the grain size as small as 3 µm can be used in ultrasonically assisted internal grinding.

2008 ◽  
Vol 389-390 ◽  
pp. 283-288 ◽  
Author(s):  
Mitsuyoshi Nomura ◽  
Yong Bo Wu ◽  
Tsunemoto Kuriyagawa ◽  
Takahiro Kawashima ◽  
Takayuki Shibata

This study aims to develop an ultrasonically assisted grinding technology for precision internal grinding of a small hole measuring several millimeters in diameter, such as those formed in a fuel injector for an automotive engine. In a previous work, an experimental apparatus mainly composed of an ultrasonic vibration spindle was designed and constructed, and grinding experiments were carried out. The purpose of this paper is to examine the effect of ultrasonic vibration on grinding force and surface roughness when the grain size and concentration of small cBN grinding wheel are changed. The experimental results indicate that applying ultrasonic vibration to the wheel decreases the normal and tangential grinding forces by more than 50% and 78%, respectively, and improves the surface roughness by as much as 10% when the wheel grain size and concentration are changed. In addition, over the range of grinding conditions employed in this paper, the grain size as small as 5μm can be used in ultrasonically assisted grinding.


2013 ◽  
Vol 797 ◽  
pp. 356-361
Author(s):  
Wen Qing Song ◽  
Yong Bo Wu ◽  
Jian Guo Cao ◽  
Jing Ti Niu

Ultrasonic assisted grinding experiments were carried out to evaluate the effects of the ultrasonic vibration (UV) on the face grinding characteristics of nickel based superalloy of Rene77. In experiments, an electroplated cBN grinding wheel was ultrasonically vibrated dominantly along its axis. The experimental results indicated that the X-axis and Y-axis components of grinding forces with UV were smaller by 44.5% and 31.6%, respectively, than those without UV. The usual fractures and debris on the surface of workpiece disappeared and the work-surface roughness Ra was decreased by 42.3% once the UV was applied. The abrasion of the grinding wheel without UV is more serious than that with UV.


2017 ◽  
Vol 8 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Kankan Ji ◽  
Xingquan Zhang ◽  
Shubao Yang ◽  
Liping Shi ◽  
Shiyi Wang ◽  
...  

Purpose The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel, respectively. Surface integrity, including surface roughness, sub-surface hardness, residual stresses and surface morphology, was investigated in detail, and the surface quality of samples ground by two grinding wheels was compared. Design/methodology/approach In the present work, surface integrity of quenched steel 1045 machined by the CBN grinding wheel and the SiC wheel was investigated systematically. All the specimens were machined with a single pass in the down-cutting mode of dry condition. Surface morphology of the ground specimen was observed by using OLYMPUS BX51M optical microscopy. Surface roughness of seven points was measured by using a surface roughness tester at a cut-off length of 1.8 mm and the measurement traces were perpendicular to the grinding direction. Sub-surface micro-hardness was measured by using HVS-1000 digital micro-hardness tester after the cross-section surface was polished. The residual stress was tested by using X-350A X-ray stress analyzer. Findings When the cut depth is increased from 0.01 to 0.07 mm, the steel surface machined by the CBN wheel remains clear grinding mark, lower roughness, higher micro-hardness and higher magnitude of compressive stress and fine microstructure, while the surface machined by the SiC grinding wheel becomes worse with increasing of cut depth. The value of micro-hardness decreases, and the surface roughness increases, and the surface compressive stress turns into tensile stress. Some micro-cracks and voids occur when the sample is processed by the SiC grinding wheel with cut depth 0.07 mm. Originality/value In this paper, the specimens of quenched steel 1045 were machined by the CBN grinding wheel and the SiC wheel with various cutting depths. The processing quality resulted from the CBN grinding wheel is better than that resulted from the SiC grinding wheel.


2016 ◽  
Vol 686 ◽  
pp. 125-130 ◽  
Author(s):  
Miroslav Neslušan ◽  
Jitka Baďurová ◽  
Anna Mičietová ◽  
Maria Čiliková

This paper deals with cutting ability of progressive Norton Quantum grinding wheel during grinding roll bearing steel 100Cr6 of hardness 61 HRC. Cutting ability of this wheel is compared with conventional grinding wheel and based on measurement of grinding forces as well as surface roughness. Results of experiments show that Norton Quantum grinding wheels are capable of long term grinding cycles at high removal rates without unacceptable occurrence of grinding chatter and surface burn whereas application of conventional wheel can produce excessive vibration and remarkable temper colouring of ground surface. Moreover, while Norton Quantum grinding wheel gives nearly constant grinding forces and surface roughness within ground length at higher removal rates, conventional grinding wheel (as that reported in this study) does not.


2014 ◽  
Vol 575 ◽  
pp. 121-127
Author(s):  
Shinn Liang Chang ◽  
Dai Jia Juan ◽  
Bean Yin Lee ◽  
You Jhih Lin

Grinding technology is used in this study to overcome the hard machining of ceramic with hard and brittle characteristics. The grinding machine with diamond grain size 25 and 5 , spindles speed 1720 rpm and 3450 rpm are applied. Combining the unintentional roll clamp and the grinding machine, ceramic rods can be ground to the desired size.In the research, surface profilometer is applied to measure the rod surface roughness of processing results under different conditions. The results show that the grinding wheel with finer particle, the roughness of the ground ceramic rod will be better. While the rotation speed of grinding wheel is increased, the surface roughness will have the same trend.


1978 ◽  
Vol 100 (3) ◽  
pp. 297-302 ◽  
Author(s):  
T. Murray ◽  
S. Malkin

An investigation is described of the effects of rotary dressing on grinding wheel performance. Grinding performance is evaluated mainly in terms of the grinding forces and surface finish. It is demonstrated that the magnitudes of the grinding forces can be attributed to differences in the size of the wear flat area obtained by the various rotary dressing conditions. For finer dresser infeeds and greater differences between the peripheral velocities of the dresser and the grinding wheel, bigger grinding forces and smoother surfaces are obtained. A direct relationship is obtained between the grinding performance and the dressing interference angle, a larger angle resulting in smaller grinding forces and rougher surfaces. This leads to a trade-off relationship between grinding forces and surface roughness which characterizes the rotary dressing process.


2016 ◽  
Vol 874 ◽  
pp. 101-108 ◽  
Author(s):  
Amir Daneshi ◽  
Bahman Azarhoushang

Structuring of the grinding wheels is a promising method to reduce the forces involved in grinding, especially during dry grinding. In this paper, one of the methods of grinding wheel structuring is presented. The structuring process was modeled to find the corresponding dressing parameters for the desired structure dimensions. The cylindrical grinding operation with the structured wheels was simulated to produce a spiral free ground surface. Afterwards, the dry grinding experiments with the structured and non-structured wheels were carried out to evaluate the efficiency of the structured wheels. The results revealed that the grinding forces can be reduced by more than 50% when the grinding wheels are structured, while the surface roughness values increase by 80%.


2010 ◽  
Vol 154-155 ◽  
pp. 573-577 ◽  
Author(s):  
Guo Fu Gao ◽  
Bo Zhao ◽  
Jie Zhao ◽  
Jing Lin Tong

The experimental research on CBN grinding wheel mechanical dressing assisted by ultrasonic vibration was carried out. Experimental results showed that ultrasonic vibration dressing is capable to improve surface topography and roundness of CBN wheel as other untraditional dressing methods. Compared with traditionally mechanical dressing, the counts of static effective grains of CBN grinding wheel dressed assisted by ultrasonic vibration increased clearly and it had clear relationship with the acoustic parameters and the dressing lead. The grains had a large protrusion height and kept good integrity after ultrasonic dressing. The technology of vibration dressing is able to prepare precisely the CBN grinding wheel.


2021 ◽  
Vol 60 (1) ◽  
pp. 691-701
Author(s):  
Zhibo Yang ◽  
Wang Sun ◽  
Dongyu He ◽  
Daocheng Han ◽  
Wei Wang ◽  
...  

Abstract In this article, the laser-assisted ultrasonic vibration dressing technique was applied to the cubic boron nitride (CBN) grinding wheel to study the effect of various process parameters (namely, laser power, dressing depth, feed rate, and grinding wheel speed) on the grinding force, surface quality, and morphological evolution of CBN abrasive particles. The results showed that abrasive particles’ morphology mainly undergoes micro-crushing, local crushing, large-area crushing, macro-crushing, and other morphological changes. The dressing force can be effectively reduced by controlling the dressing process parameters. Besides, grinding tests are performed on the grinding wheel after dressing to reveal specimens’ surface quality. Excellent grinding characteristics and grinding quality of the grinding wheel were obtained by the proposed technique with the optimized process parameters.


Sign in / Sign up

Export Citation Format

Share Document