Chloride Resistance of Concrete with Marine Blended Cement Using Corrosion Resistant Mineral Admixture

2013 ◽  
Vol 831 ◽  
pp. 23-26 ◽  
Author(s):  
Jun Yong Bae ◽  
Kyung Joon Shin ◽  
Jung Hwan Hyun ◽  
Young Il Jang ◽  
Yun Yong Kim

In this study, the chloride resistant properties of concrete with MBC (marine blended cement) were evaluated by an accelerated corrosion test of reinforced concrete. The half-cell potential measurements indicated that the chloride resistance of MBC concrete is approximately 32% larger than that of TBC (ternary blended cement) concrete. As for the reinforcement corrosion area, while the TBC specimens exhibited 5.32-6.11% corrosion at the final 40th cycle, the MBC specimens did not show any sign of steel corrosion. The chloride penetration depth of the MBC specimens was approximately 41-79% smaller than that of the MBC specimens.

Author(s):  
Shrabanee Giri

Corrosion of reinforcement in concrete affects the strength and durability of reinforced concrete structure. Monitoring and maintenance of concrete structure throughout the service life prevent the ingress of corrosion at the initial stage. Half-cell potential meter was developed and fabricated to monitor the corrosion potential of reinforcement in a M25 grade concrete. Half-cell potential test and accelerated corrosion test has been carried out in marine environment of 3.5% of NaCl solution. The potential behaviour of specimen subjected to accelerated corrosion is studied throughout the test period. The results were obtained in terms of current flow behaviour and weight loss. Obtained results has been analyzed graphically and a comparative analysis has been carried out to know the rate of corrosion occurred in the specimen by accelerated corrosion test and half-cell potential test. Obtained results clearly indicates that the potential behaviour value increases with increase in time from 160 mV on day 1 to 949 mV on day 5. In the other way the compressive strength value for corroded specimen is lesser than the controlled specimen subjected to accelerated corrosion.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed A. Abouhussien ◽  
Assem A. A. Hassan

Reinforced concrete structures, especially those in marine environments, are commonly subjected to high concentrations of chlorides, which eventually leads to corrosion of the embedded reinforcing steel. The total time to corrosion of such structures may be divided into three stages: corrosion initiation, cracking, and damage periods. This paper evaluates, both empirically and experimentally, the expected time to corrosion of reinforced concrete structures. The tested reinforced concrete samples were subjected to ten alternative curing techniques, including hot, cold, and normal temperatures, prior to testing. The corrosion initiation, cracking, and damage periods in this investigation were experimentally monitored by an accelerated corrosion test performed on reinforced concrete samples. Alternatively, the corrosion initiation time for counterpart samples was empirically predicted using Fick’s second law of diffusion for comparison. The results showed that the corrosion initiation periods obtained experimentally were comparable to those obtained empirically. The corrosion initiation was found to occur at the first jump of the current measurement in the accelerated corrosion test which matched the half-cell potential reading of around −350 mV.


2011 ◽  
Vol 295-297 ◽  
pp. 1436-1440 ◽  
Author(s):  
Zhi Yong Liu ◽  
Xin Lai He ◽  
Ji Qing Chen ◽  
Shan Wu Yang ◽  
Bang Wen Chen ◽  
...  

By testing the mechanical properties, microstructure observation, accelerated corrosion test, the effect of alloying element nickel on microstructure and properties of weathering steels was studied. The results showed that nickel content from 0 to 0.44%(mass percent)have little influence on microstructure and mechanical properties of weathering steels.The corrosion resistance enhanced with increasing nickel content, and nickel content of 0.11% or more had significant enfluence on corrosion resistant performance of weathering steels.


2021 ◽  
pp. 147592172110417
Author(s):  
Shunquan Zhang ◽  
Zijian Jia ◽  
Yuanliang Xiong ◽  
Ruilin Cao ◽  
Yamei Zhang ◽  
...  

In this research, four embedded ultrasonic piezoelectric transducers were combined to form cross pair and opposite pair monitoring schemes for continuously monitoring the damage to different strength grades of concrete caused by the corrosion of reinforcements under accelerated corrosion conditions. The damage process was analyzed by combining the electrochemical effects of steel corrosion, that is, half-cell potential and galvanic current tests. Results show that the embedded ultrasonic transducer method can detect damage of concrete during steel corrosion and that each stage of damage can be determined from the plots of ultrasonic transducer data versus corrosion rate. The results further indicate that a combination of cross pair and opposite pair testing methods can more comprehensively reflect the damage to concrete caused by the expansion of corrosion of steel bars, than a single testing method. Since electrochemical testing can only depict the corrosion state of steel rebars, it is beneficial to use embedded ultrasonic measurements to monitor the damage process of concrete. The differences in damage between different strength grades of concrete, that is, the resistance to corrosion of steel bars and brittle failure, can be obtained from the plots of ultrasonic transducer data.


2013 ◽  
Vol 368-370 ◽  
pp. 911-918 ◽  
Author(s):  
Zhong Lu Cao ◽  
Makoto Hibino ◽  
Hiroki Goda

The effect of nitrite on steel corrosion induced by sulfate in three simulated concrete pore environments has been investigated by means of half-cell potential, linear polarization resistance and visual examination, as well as sulfate-induced corrosion is compared with chloride-induced corrosion. The results indicate that with the presence of nitrite, sulfate-induced corrosion can be inhibited effectively. Sulfate threshold level increases with the increasing of nitrite concentration and highly alkaline environment plays an important role in assisting nitrite to inhibit sulfate-induced corrosion. Chloride-induced corrosion is more prone to initiate than sulfate-induced corrosion in highly alkaline environment but in neutral environment, when nitrite content is equal to or less than 0.053mol/L, sulfate-induced corrosion is more likely to occur than chloride-induced corrosion.


2020 ◽  
Vol 184 ◽  
pp. 01082
Author(s):  
V Srinivasa Reddy ◽  
K Satya Sai Trimurty Naidu ◽  
M V Seshagiri Rao ◽  
S Shrihari

Very limited guidelines are available on the use of corrosion resistant inhibitors as a constituent material in concrete due to availability of statistics on its corrosion inhibiting efficiency. So the study is conducted on the M25 grade concrete mixed with few selected corrosion inhibitors of organic and non-organic nature to comprehend the impact of these corrosion inhibitors on the conductivity of electricity in these concretes. Based on the other researchers’ work, four well know corrosion inhibitors such as Calcium nitrate, Di-ethanolamine, Sodium nitrite and Hexamine and are chosen for study. Dosages of 1%, 2%, 3%, 4% and 5% the weight of cement are chosen. Measured electrical resistivity and half-cell potential values of all corrosion inhibitors admixed M25 grade concrete mixes indicates the superior corrosion inhibition ability of calcium nitrate and Di-ethanolamine’s with shows high electrical resistance.


2011 ◽  
Vol 317-319 ◽  
pp. 236-239
Author(s):  
Zhi Yong Liu ◽  
Xin Lai He ◽  
Shan Wu Yang ◽  
Qiang Xue Zhou

The ultra-low carbon high strength weathering steel was trial manufactured. By Optical micrographs observation, scanning electronic microscope (SEM), transmission electronic microscope (TEM), accelerated corrosion test, the corrosion resistant performance of test steel and CortenB steel were studied. The results showed that yield strength, tensile strength, elongation and -40 °C impact energy of test steel reached 510MPa, 600MPa, 22% and 115J, respectively. Corrosion resistance of test steel was superior to that of CortenB. The microstructure of ferrite and bainite, quickly forming adhesive dense rust layers to improve the corrosion resistance of test steel.


2015 ◽  
Vol 1 (2) ◽  
pp. 42
Author(s):  
E. Moreno ◽  
M. I. Prieto ◽  
M. N. González ◽  
N. Llauradó

ResumenLa carbonatación del hormigón o la intrusión de cloruros en suficiente cantidad para alcanzar el nivel de las barras, es desencadenante de la corrosión de la armadura. Uno de los efectos más significativos de la corrosión del acero de refuerzo en estructuras de hormigón armado es la disminución de las propiedades relacionadas con la ductilidad del acero. El reforzamiento tiene un efecto decisivo en la ductilidad global de las estructuras de hormigón armado. Se utilizan diferentes códigos para clasificar el tipo de acero en función de su ductilidad usando los valores mínimos de varios parámetros. El uso de indicadores de ductilidad asociados a diferentes propiedades puede ser ventajoso en muchas ocasiones. Se considera necesario para definir la ductilidad por medio de un solo parámetro que tiene en cuenta los valores de resistencia y deformación simultáneamente. Hay una serie de criterios para definir la ductilidad del acero mediante un único parámetro. El presente estudio experimental se ocupa de la variación en la ductilidad de las barras de acero embebido en hormigón cuando se expone a la corrosión acelerada. Este trabajo analiza la idoneidad de un nuevo indicador de la ductilidad utilizado en barras corroídas. AbstractThe carbonation of concrete or the chlorides ingress in such quantity to reach the level of bars is triggers of reinforcement corrosion. One of the most significant effects of reinforcing steel corrosion on reinforced concrete structures is the decline in the ductility-related properties of the steel. Reinforcement ductility has a decisive effect on the overall ductility of reinforced concrete structures. Different Codes classify the type of steel depending on their ductility defined by the minimum values of several parameters. Using indicators of ductility associating different properties can be advantageous on many occasions. It is considered necessary to define the ductility by means of a single parameter that considers strength values and deformation simultaneously. There are a number of criteria for defining steel ductility by a single parameter. The present experimental study addresses the variation in the ductility of concrete-embedded steel bars when exposed to accelerated corrosion. This paper analyzes the suitability of a new indicator of ductility used in corroded bars.


2012 ◽  
Vol 166-169 ◽  
pp. 1926-1930 ◽  
Author(s):  
Xiao E Zhu ◽  
Mu Xiang Dai

Basing half-cell potential method estimating steel corrosion rate in concrete was studied in this paper. The exponential relationship between the corrosion current and the corrosion potential was regressed by the data collected from the linear polarization method experiment. Potential collected by the half-cell potential method and linear polarization resistance method in the experiment were close, it is reasonable to using regression equation. Regression equation was applied to analysis steel corrosion rate in a concrete structure column.


Sign in / Sign up

Export Citation Format

Share Document