Study on Process and Properties of Needling Silica Fiber Reinforced Silica Composites

2013 ◽  
Vol 833 ◽  
pp. 146-149 ◽  
Author(s):  
Qi Hong Wei ◽  
Chong Hai Wang ◽  
Hong Sheng Wang ◽  
Ling Li ◽  
Chang Tao Shao ◽  
...  

With the development of military weapons, the demand of weapons is growing. But now 2.5 D silica fiber reinforced silica composites have long production period, high cost,which limited the production and schedule of weapons. This paper studied low cost manufacturing technology from two aspects of fiber preform weaving mode and molding process. The preforms were prepared with needling process.CT images of needling preform, thermophysical properties and mechanical properties and dielectric properties of needling silica fiber reinforced silica composites were studied inthis paper.The results showed that needling SiO2f/SiO2 composites had short production period and low cost, which had good mechanical properties.Tensile strength was 20.1MPa, compressive strength of XY direction was 88.3MPa,bending strength was 52.2MPa. Dielectric contant was less than 3.05 and dielectric loss was less than 8×10-3.

2012 ◽  
Vol 174-177 ◽  
pp. 1459-1462
Author(s):  
Gui Qiu Huang ◽  
Zhen Huang ◽  
Jing Jiang ◽  
Xue Yuan Deng

This paper focuses on the mechanical properties of carbon fiber cloth reinforced bamboos. Using the carbon fiber cloth to reinforce circularly the bamboo can protect dry bursting of the bamboos and improve its mechanical performances. A series of experiments were carried out to investigate the compressive strength, tensile strength and bending strength of bamboo reinforced with carbon fiber cloth. The mechanical performances of bamboos with and without reinforcing were compared and the efficient reinforcing method was suggested, with such method the compressive strength and bending strength of carbon fiber reinforced bamboos could be increased obviously compared with that of bamboos without reinforcing.


2012 ◽  
Vol 517 ◽  
pp. 233-237 ◽  
Author(s):  
Zhen Huang ◽  
Yong Jun Wu ◽  
Chang Zhang

This paper presents an investigation on the mechanical properties of bamboos Mao Zhu (Phyllostachys Pubescens) strengthened with carbon fiber reinforced polymer (CFRP) and used as the substitute of steel substructures for a low carbon construction. At first, a series experimental study is carried out to investigate the compressive strength, bending strength and tensile strength of Mao Zhu, which is strengthened with CFRP by different ways. Then the mechanical properties of bamboos with different strengthening methods of CFRP are compared. The most efficient strengthening method is suggested for the carbon fiber strengthened bamboos, with such method the compressive strength and bending strength of Mao Zhu could be increased more than 30% and 44% compared with that of Mao Zhu without strengthening. Finally this paper discusses the advantages of the carbon fiber strengthened bamboos used as the substitutes of the steel substructures, for example the purlins and bracings of steel portal frame structures. The effective use of the bamboos as the substitutes of steel substructures will reduce the steel amount used in the steel portal frame structure, which is commonly used as low-rise factory building structure worldwide.


2020 ◽  
Vol 1 (1) ◽  
pp. 16-24
Author(s):  
Saeid Golizadeh Fard

This paper investigates the possibility of combining steel fibers with different weight percentages along with their functions in increasing compressive strength, indirect tensile strength and bending strength. It`s been considered an important economic issue for a long time the ability to service and increase the load-bearing capacity of structural materials. Concrete as a widely used structural material is widely used today. Despite its remarkable properties including high ductility, high durability, longevity, availability and low cost, concrete is a brittle material and performs extremely poor under flexural and tensile loads. In general, the breakdown and destruction of concrete is strongly dependent on the formation of cracks and micro-cracks. As the loading increases, the micro-cracks interconnect and form cracks. In order to address this problem and to create homogeneous conditions, a series of thin filaments has been used throughout the concrete in recent decades; They are called fibers. Steel fiber is one of the most commonly used fibers in concrete. In this study, the compressive strength of concrete was investigated which in some specimens reinforced with steel and containing pozzolanic materials, the compressive strength of control samples increased with the use of fiber etc. In the present study, the flexural and tensile strength of steel fiber reinforced specimens were investigated. According to the results, flexural strength increases with increase in steel fibers. The designs contain 1%, 1.5% and 2% of the Dramix hooked steel fibers used in the research. By reinforcing the specimens with steel fibers, the behavior of tensile concrete is much more flexible than that of non-steel specimens.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Author(s):  
M.A.P Handana ◽  
◽  
Besman Surbakti ◽  
Rahmi Karolina ◽  
◽  
...  

The use of borax solution as a preservative in wood and bamboo materials is well known in the community. A borax solution is an environmentally friendly liquid that can dissolve in water, so it is suitable to be used as a preservative within cold or hot soaking techniques. The ability of borax to resist insects and fungus attacks on bamboo has been proven, but the effect of the solution on the strength of bamboo must also be investigated. This study conducts to investigate the effects of borax and its additives as preservative solutions to the mechanical properties of bamboos. The bamboos preservations were conducted by cold conditions of immersion, while the mechanical properties were performed to understand the effects of preservatives. The result of this study indicated that 30% to 50% borax in the preservative solution is sufficient to provide significant increase in strength for compressive strength, tensile strength, and bending strength of bamboo specimen. From this study, the use of borax solution in preserving the bamboos materials improved the quality of bamboos based on its mechanical properties.


2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.


Sign in / Sign up

Export Citation Format

Share Document