Study on Landscape Design of Roof Garden

2013 ◽  
Vol 838-841 ◽  
pp. 2993-2996
Author(s):  
Ying Sun ◽  
Guang Lin Gao

The roof garden is a complex form of roofs landscape. Advanced green roof design played a huge ecological and economic benefits gradually being recognized for the significance of green roofs and classification, this paper study the roof garden design principles and key technologies for preliminary summary and discussion, proposed green roof functioning and performance arts beautiful landscape design methods.

2010 ◽  
Vol 5 (3) ◽  
pp. 50-68 ◽  
Author(s):  
Anne Altor

Green roof technology and implementation are taking root in North America at an accelerating pace. Growing recognition of the benefits of green roofs and increasing interest in green infrastructure are leading to expansion of green roof technologies that have been in use for decades in Europe and elsewhere. While some regions have adopted the use of green roofs on a large scale, other areas are warming up to the concept more slowly. Large-scale implementation of green roofs has not yet occurred in Indiana, but a number of exemplary projects have been constructed, and there are signs that interest in the technology is increasing in the state. The purpose of this article is to provide an overview of green roof technology, analyze selected green roofs in Indiana, explore trends in the state, and address issues for future development of green roof technology in the region. A variety of green roofs were investigated throughout the state. Discussions were held with individuals involved in each project to obtain technical and logistical details of green roof design, installation, and performance.


2013 ◽  
Vol 69 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Yanling Li ◽  
Roger W. Babcock

Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 6 ◽  
Author(s):  
Milad Mahmoodzadeh ◽  
Phalguni Mukhopadhyaya ◽  
Caterina Valeo

A comprehensive parametric analysis was conducted to evaluate the influence of the green roof design parameters on the thermal or energy performance of a secondary school building in four distinctively different climate zones in North America (i.e., Toronto, ON, Canada; Vancouver, BC, Canada; Las Vegas, NV, USA and Miami, FL, USA). Soil moisture content, soil thermal properties, leaf area index, plant height, leaf albedo, thermal insulation thickness and soil thickness were used as design variables. Optimal parameters of green roofs were found to be functionally related to meteorological conditions in each city. In terms of energy savings, the results showed that the light-weight substrate had better thermal performance for the uninsulated green roof. Additionally, the recommended soil thickness and leaf area index for all four cities were 15 cm and 5 respectively. The optimal plant height for the cooling dominated climates is 30 cm and for the heating dominated cities is 10 cm. The plant albedo had the least impact on the energy consumption while it was effective in mitigating the heat island effect. Finally, unlike the cooling load, which was largely influenced by the substrate and vegetation, the heating load was considerably affected by the thermal insulation instead of green roof design parameters.


2015 ◽  
Vol 25 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Derald A. Harp ◽  
Cheng Chen ◽  
Curtis Jones

Green roofs provide multiple environmental and economic benefits, such as roof surface temperature reduction, reduced internal cooling needs, storm water management, and extended life span of roofing materials. However, green roof substrates must be relatively lightweight, so it is typically coarse with limited water holding capacity. We hypothesize the physical characteristics that make the substrates successful on a roof are likely to reduce seed germination. For this study, we tested the germination of three perennial species and one annual: shasta daisy (Leucanthemum ×superbum), yarrow (Achillea millefolium), and indian blanket (Gaillardia pulchella), and pinto bean (Phaseolus vulgaris) (as a control) across five different substrates: peat/perlite/large expanded shale, compost/sand/expanded shale, compost/black dirt/expanded shale, compost/expanded shale, and peat/perlite (control). Substrate physical and chemical properties were analyzed, and a germination test conducted using a randomized complete block design, with each species/substrate combination appearing once per block. Germination was defined as seedling emergence, and monitored every 7 days for 28 days. Pinto bean had the highest germination (76.2%) across all substrates, compared with 43.4% for indian blanket, 40.4% for yarrow, and 23.0% for shasta daisy. Seed germination, across all species, was lower in green roof substrates. Germination success was very strongly correlated with seed length, seed width, and seed area, while no relationship was found between seed germination and substrate pH or electrical conductivity (EC). Therefore, it is likely that the physical characteristics of green roof substrates create poor conditions for seed germination.


2020 ◽  
Vol 30 (6) ◽  
pp. 761-769
Author(s):  
Julieta Trevino Sherk ◽  
Wenyan Fu ◽  
Joseph C. Neal

Compared with traditional roofing, green roofs (GRs) have quantifiable environmental and economic benefits, yet limited research exists on GR plant survival, maintenance practices, and costs related to plant performance. The objective of this study was to assess plant cover, site conditions, and maintenance practices on 10 extensive GRs in the Research Triangle Area of North Carolina. Green roof maintenance professionals were surveyed to assess plant performance, maintenance practices, and maintenance costs. Vegetation cover on each site was characterized. Relationships among plant performance and environmental and physical site characteristics, and maintenance practices were evaluated. Survey respondents ranked weed control as the most problematic maintenance task, followed by irrigation, pruning, and debris removal. No single design or maintenance factor was highly correlated with increased plant cover. Green roof age, substrate organic matter, and modular planting methods were not correlated with greater plant cover. Results showed a trend that irrigation increased plant cover. Plants persisting on GRs included several species of stonecrop (Sedum sp.), but flame flower (Talium calycinum) and ice plant (Delosperma basuticum) were also present in high populations on at least one roof each. Green roof maintenance costs ranged from $0.13/ft2 to $3.45/ft2 per year, and were greater on sites with more weeds and frequent hand watering.


2022 ◽  
Author(s):  
Ana A. Calvino ◽  
Julia Tavella ◽  
Hernan M. Beccacece ◽  
Elizabet Estallo ◽  
Diego Fabian ◽  
...  

Green roofs are considered key elements of the urban green infrastructure since they offer several environmental benefits, including habitat provision for arthropods. To achieve these benefits and ensure green roof success, an appropriate plant selection is an important step in the design of these infrastructures, especially where green roof technology is emerging like in South American cities. So far, decisions of using native or exotic plant species in green roofs had never been evaluated taking into account the plant potential to foster beneficial arthropods. By applying an integrative multicriteria decision framework that combined the habitat template hypothesis with the potential of plants to attract floral visitors and natural enemies, we obtained a ranked set of candidate native and exotic plant species. Among the best-ranked candidate species, we further compared the performance of six native and six exotic species in 30 experimental green roofs installed in Cordoba city, Argentina. To evaluate plant success, the occurrence and cover of each species were recorded one year after establishment under two management conditions: regular watering and weeding of spontaneous plants, and no management (15 roofs each). All selected species increased their vegetative cover one year after establishment. More interestingly, native plants had an advantage over exotic plant species as they exhibited a significantly higher occurrence and a slightly higher cover with no management than exotics. Native annuals were able to reseed the following season even in the absence of management, thus highlighting the relative importance of lifespan as a useful plant trait for future studies in green roof design. Given that green roofs are one of the possible solutions to ameliorate the negative effects of urban habitat loss on arthropod diversity, the development of an integrative multicriteria decision framework that takes into account the potential of native and exotic plant species for promoting beneficial arthropods would give a new twist in plant selection processes for green roofs.


2019 ◽  
Vol 14 (2) ◽  
pp. 29-44 ◽  
Author(s):  
Mert Eksi ◽  
D. Bradley Rowe

Although numerous examples of green roofs can be found in Turkey, limited research has been conducted on plant material and substrate type in this climate. Both plants and substrate are very important components in green roof design, it is essential to determine the proper substrates and plants in green roof systems for domestic green roof design. Two types of growing substrates: a commercial substrate consisting of crushed brick and clay (45%), pumice (45%), and organic matter (10%), and a recycled substrate including 90% coarse pumice (10–20 mm) and municipal compost (10%), were tested in three depths of 4, 7 and 10 cm. Tested plant species included Achillea millefolium , Armeria maritima , Sedum acre and Sedum album . Overall, the commercial substrate performed better than the recycled pumice. In addition, deeper substrates promoted greater survival and growth for nearly all species tested. Either A. maritima or A. millefolium survived in the recycled pumice at any depth, whereas they did survive when grown in the commercial substrate in greater than 7 cm and 10 cm, respectively. They both likely would require supplemental irrigation to be acceptable for green roofs in Istanbul or locations with a similar climate. Both Sedum species survived in all substrate types and depths. Information gained can be utilized by green roof professionals in the Istanbul region and in other parts of the world with a similar climate.


2019 ◽  
Vol 11 (11) ◽  
pp. 3020 ◽  
Author(s):  
Stefano Cascone

In order to consider green roofs as an environmentally friendly technology, the selection of efficient and sustainable components is extremely important. Previous review papers have mainly focused on the performance and advantages of green roofs. The objective of this paper is to examine the primary layers: The waterproof and anti-root membranes; the protection, filter, and drainage layers; the substrate; and the vegetation. First, the history, modern applications, benefits and classification are analyzed in order to present a well-defined state of the art of this technology. Then, the roles, requirements, characteristics, and materials are assessed for each green roof layers. This technology was compared to a conventional roof technology, Mediterranean climate conditions and their influence on green roof design were assessed, also comparing them with Tropical area and focusing on irrigation systems, examples about the commercial materials and products available in the market were provided and innovative materials coming from recycled sources were analyzed. Future research should evaluate new materials for green roof technologies, in order to enhance their performance and increase their sustainability. The information provided in this review paper will be useful to develop Mediterranean green roof guidelines for selecting suitable components and materials during the design and installation phases.


Urban Science ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 14 ◽  
Author(s):  
Teresa Paço ◽  
Ricardo Cruz de Carvalho ◽  
Pedro Arsénio ◽  
Diana Martins

Green roof typology can vary depending on buildings structure, climate conditions, substrate, and plants used. In regions with hot and dry summers, such as the Mediterranean region, irrigation plays an essential role, as the highest temperatures occur during the driest period of the year. Irrigation might reduce the heat island effect and improve the cooling of buildings during this period, however, the added cost of maintenance operations and additional energy consumption could outrun the benefits provided by the project. Moreover, in situations where water is scarce or primarily channelled to other uses (e.g., domestic, agriculture or industry) during drought occurrence, it is advisable to implement green roof projects with the lowest use of water possible. The objective of the present work is to investigate solutions to optimize water use in green roofs under Mediterranean conditions, such as those of southern Europe. Two case studies are presented for Portugal, and potential techniques to reduce irrigation requirements in green roofs were tested. These addressed the use of native plant species, including the extreme type of a non-irrigated green roof (Biocrust roof) and techniques for plant installation. Plant drought tolerance was found to be an advantage in green roofs under these climatic conditions and, for the species studied, aesthetic value could be maintained when irrigation decreased.


2016 ◽  
Vol 62 (1-2) ◽  
pp. 103-111 ◽  
Author(s):  
Amiel Vasl ◽  
Amy Heim

The growing phenomenon of green roofs throughout the world mostly results in the establishment of extensive green roofs with low species diversity. However, research from the last few decades has shown that several advantages can accrue from diverse ecological systems, such as increased faunal diversity, storm water retention, thermal stability, pollution mitigation, and visual appeal. The maintenance of diversity on extensive green roofs has not been closely examined and few studies incorporate methods to ensure long-term coexistence into green roof design. Theoretical work has placed much focus on the niche and neutral theories that attempt to explain diversity as a result of the existence of different habitats or of demographic and dispersal patterns, respectively. These theories have resulted in several theoretical and practical recommendations for the maintenance of diversity in ecological systems and could suggest additional practices that would support biodiverse green roofs. We hereby review and discuss relevant theory and supporting research to provide suggestions regarding future research in the field as well as practical green roof construction recommendations and species selection.


Sign in / Sign up

Export Citation Format

Share Document