Evaluation of Groundwater Resources of an Alluvial Pluvial Fan in Hebei Province, China Using Hydrological Budget Method

2013 ◽  
Vol 864-867 ◽  
pp. 2263-2267
Author(s):  
Li Li Zhang ◽  
Shu Qun She ◽  
Yun Wang ◽  
Shou Qiang Liu ◽  
Yi Fan Zeng

Estimating groundwater recharge and groundwater discharge are key components in determining the sustainable utilization of groundwater resources. Infiltration recharge by rainfall and irrigation water recharge are the main supply of groundwater in the study area. In this paper, based on the hydrological budget method, we analyzed, the utilization of groundwater resources, calculated, the recharge and excretion of groundwater in the study area from 1995 to 2012, and finally, pointed out the groundwater level is mainly affected by the irrigation water. Therefore, readjustment of the structure of plant is to ensure the ecological environment, utilize rationally the groundwater resources and achieve the goal of sustainable use of groundwater resources.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mara Meggiorin ◽  
Giulia Passadore ◽  
Silvia Bertoldo ◽  
Andrea Sottani ◽  
Andrea Rinaldo

The social, economic, and ecological importance of the aquifer system within the Bacchiglione basin (Veneto, IT) is noteworthy, and there is considerable disagreement among previous studies over its sustainable use. Investigating the long-term quantitative sustainability of the groundwater system, this study presents a statistical methodology that can be applied to similar cases. Using a combination of robust and widely used techniques, we apply the seasonal Mann–Kendall test and the Sen’s slope estimator to the recorded groundwater level timeseries. The analysis is carried out on a large and heterogeneous proprietary dataset gathering hourly groundwater level timeseries at 79 control points, acquired during the period 2005–2019. The test identifies significant decreasing trends for most of the available records, unlike previous studies on the quantitative status of the same resource which covered the domain investigated here for a slightly different period: 2000–2014. The present study questions the reason for such diverging results by focusing on the method’s accuracy. After carrying out a Fourier analysis on the longest available timeseries, for studies of groundwater status assessment this work suggests applying the Mann–Kendall test to timeseries longer than 20 years (because otherwise the analysis would be affected by interannual periodicities of the water cycle). A further analysis of two 60-year-long monthly timeseries between 1960 and 2020 supports the actual sustainable use of the groundwater resource, the past deployment of the groundwater resources notwithstanding. Results thus prove more reliable, and meaningful inferences on the longterm sustainability of the groundwater system are possible.


2013 ◽  
Vol 788 ◽  
pp. 311-314
Author(s):  
Yan Na Zhao ◽  
Yu Qiang Sun

Land resource is an important part of environmental resources. In order to make better use of limited land resources, we should strengthen the evaluation of sustainable utilization of land resources. Firstly, This paper constructs land resource sustainable utilization evaluation index system of primary from two angles of quantity and quality . Secondly, we uses the AHP method to filter the index. Finally, we constructs the sustainable use of land resources final evaluation index system .


2016 ◽  
Vol 42 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Nazmoon Nahar Sumiya ◽  
Hafiza Khatun

This study attempts to portray the scenario of groundwater level with respect to rainfall variability and its use for irrigation purpose for rice production in Bangladesh. Data on groundwater level and irrigation water usage were collected from BWDB and BBS. The changing pattern of groundwater level are presented in maps using Inverse Distance Weighted (IDW) interpolation method in ArcGIS 10.3. Analysis shows the increasing dependency on groundwater than on surface water for irrigation purpose at varied range across the country. The groundwater level is declining at a higher rate in northern parts of the country than the southern parts. In the context of climatic variability, excessive use of groundwater can trigger the lowering of groundwater level which will require more energy to uptake water for irrigation and so the input cost of production of rice will be increased. Therefore, apposite measures are required to ensure sustainable use of groundwater resources. Asiat. Soc. Bangladesh, Sci. 42(2): 177-189, December 2016


2012 ◽  
Vol 546-547 ◽  
pp. 1130-1135
Author(s):  
Zhi Wei Zhao

The overexploitation of groundwater has caused many serious hydrological geological disasters in the world wide. In order to solve this subject, a groundwater level monitoring system which adopts C/S architecture design and is composed of a monitoring center, transmission network and monitoring terminals is proposed. The monitoring center is made up of a computer with professional monitoring software. The monitoring terminals are arranged at different area as required, and access Internet to transmit data to remote monitoring center server through GPRS net work. The monitoring center server is responsible for receiving, processing, storage, display and analysis the data about groundwater from monitoring terminals. The experimental results show that the system is stable, high precision, stability and timeliness of features, and realizes the automatic collection and centralized management of groundwater monitoring data that provides a reliable scientific basis for sustainable utilization development of groundwater resources and geological hazards forecasting.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Kyoochul Ha ◽  
Eunhee Lee ◽  
Hyowon An ◽  
Sunghyun Kim ◽  
Changhui Park ◽  
...  

This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.


Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.


2020 ◽  
Vol 12 (21) ◽  
pp. 8932
Author(s):  
Kusum Pandey ◽  
Shiv Kumar ◽  
Anurag Malik ◽  
Alban Kuriqi

Accurate information about groundwater level prediction is crucial for effective planning and management of groundwater resources. In the present study, the Artificial Neural Network (ANN), optimized with a Genetic Algorithm (GA-ANN), was employed for seasonal groundwater table depth (GWTD) prediction in the area between the Ganga and Hindon rivers located in Uttar Pradesh State, India. A total of 18 models for both seasons (nine for the pre-monsoon and nine for the post-monsoon) have been formulated by using groundwater recharge (GWR), groundwater discharge (GWD), and previous groundwater level data from a 21-year period (1994–2014). The hybrid GA-ANN models’ predictive ability was evaluated against the traditional GA models based on statistical indicators and visual inspection. The results appraisal indicates that the hybrid GA-ANN models outperformed the GA models for predicting the seasonal GWTD in the study region. Overall, the hybrid GA-ANN-8 model with an 8-9-1 structure (i.e., 8: inputs, 9: neurons in the hidden layer, and 1: output) was nominated optimal for predicting the GWTD during pre- and post-monsoon seasons. Additionally, it was noted that the maximum number of input variables in the hybrid GA-ANN approach improved the prediction accuracy. In conclusion, the proposed hybrid GA-ANN model’s findings could be readily transferable or implemented in other parts of the world, specifically those with similar geology and hydrogeology conditions for sustainable planning and groundwater resources management.


Author(s):  
K. Furuno ◽  
A. Kagawa ◽  
O. Kazaoka ◽  
T. Kusuda ◽  
H. Nirei

Abstract. Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ting Guo ◽  
Huiying Yu

Starting from the main eco-environmental problems faced by water environment, taking Yanhe River Basin as an example, this paper discusses the theoretical connotation and evaluation calculation method of eco-environmental water consumption. In order to study the eco-environmental water consumption of Yanhe River Basin, a runoff driving factor mining method based on big data analysis is established in this paper. Aiming at the problem that the statistical law and genetic law of runoff change frequently in changing environment, the mining technology method of runoff key driving factors is proposed by combining traditional methods with big data analysis. The characteristic factors that have no significant impact on runoff change are removed, the implicit characteristic factors affecting runoff change are extracted, the driving relationship of hydrological, meteorological, and vegetation characteristic factors on ecological water consumption change is identified, and the key driving factors of ecological water consumption change are extracted, which lays a data foundation for ecological water consumption prediction based on machine learning. The economic water consumption based on eco-environmental water consumption in Yanhe River Basin in the future is predicted (including water demand in three aspects of industry, agriculture, and life); that is, the prediction is to meet the economic water demand on the basis of ensuring that the water consumption of ecological environment will not be occupied, which can effectively ensure the improvement of ecological environment function in Yanhe River Basin and is conducive to the sustainable utilization of water resources in Yanhe River Basin. The research is only based on a small watershed such as Yanhe River Basin, and the purpose of the research is to provide a reference for ecological environment protection and sustainable utilization of water resources in the Loess Plateau, even in the arid, semiarid, and semihumid areas of North China.


Sign in / Sign up

Export Citation Format

Share Document