A Formaldehyde Gas Sensor Based on Zinc Doped Lanthanum Ferrite

2013 ◽  
Vol 873 ◽  
pp. 304-310 ◽  
Author(s):  
Jin Zhang ◽  
Yu Min Zhang ◽  
Chang Yi Hu ◽  
Zhong Qi Zhu ◽  
Qing Ju Liu

The gas-sensing properties of zinc doped lanthanum ferrite (Zn-LaFeO3) compounds for formaldehyde were investigated in this paper. Zn-LaFeO3 powders were prepared using sol-gel method combined with microwave chemical synthesis. The powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formaldehyde gas-sensing characteristics for the sample were examined. The experimental results indicate that the sensor based on the sample Zn-LaFeO3 shows excellent gas-sensing properties to formaldehyde gas. At the optimal operating temperature of 250°C, the sensitivity of the sensor based on LaFe0.7Zn0.3O3 to 100ppm formaldehyde is 38, while to other test gases, the sensitivity is all lower than 20. The response and recovery times for the sample to formaldehyde gas are 100s and 100s, respectively.

2017 ◽  
Vol 11 (4) ◽  
pp. 265-274 ◽  
Author(s):  
Ali Mirzaei ◽  
Maryam Bonyani ◽  
Shahab Torkian ◽  
Mahdi Feizpour ◽  
Anna Bonavita ◽  
...  

In this work, Fe2O3 nanoparticles (NPs) were successfully synthesized by Pechini sol-gel method. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction characterizations were used to study the morphology and crystal structure of the synthesized products. The electrical and gas sensing behaviour of the synthesized and commercial Fe2O3 samples, prepared in the form of thick films, were studied. Though the commercial Fe2O3 powders had lower resistance but it was found that the synthesized Fe2O3 NPs had better gas sensing properties. The underlying mechanisms are discussed in details. The present findings show advantages of Fe2O3 NPs over micro-size particles for gas sensing applications.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550011 ◽  
Author(s):  
A. Sharma ◽  
M. Tomar ◽  
V. Gupta ◽  
A. Badola ◽  
N. Goswami

In this paper gas sensing properties of 0.5–3% polyaniline (PAni) doped SnO 2 thin films sensors prepared by chemical route have been studied towards the trace level detection of NO 2 gas. The structural, optical and surface morphological properties of the PAni doped SnO 2 thin films were investigated by performing X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Raman spectroscopy measurements. A good correlation has been identified between the microstructural and gas sensing properties of these prepared sensors. Out of these films, 1% PAni doped SnO 2 sensor showed high sensitivity towards NO 2 gas along with a sensitivity of 3.01 × 102 at 40°C for 10 ppm of gas. On exposure to NO 2 gas, resistance of all sensors increased to a large extent, even greater than three orders of magnitude. These changes in resistance upon removal of NO 2 gas are found to be reversible in nature and the prepared composite film sensors showed good sensitivity with relatively faster response/recovery speeds.


2013 ◽  
Vol 320 ◽  
pp. 554-557 ◽  
Author(s):  
Yu Min Zhang ◽  
Yu Tao Lin ◽  
Jin Zhang ◽  
Zhong Qi Zhu ◽  
Qiang Liu ◽  
...  

Our previous study revealed that the gas sensitive property of Silver-modified Lanthanum Ferrite (Ag-LaFeO3) is well, but the operating temperature is still high and the sensitivity also needs to be improved. This work based on our previous study. Ag-LaFeO3 was further modified by the Carbon nanoTubes (CNTs). The Ag-LaFeO3 powder modified with CNTs (CNTs-Ag-LaFeO3) was prepared by a sol-gel method combined with microwave chemical synthesis. The structure and gas-sensing properties were investigated. The results show that the structure of CNTs-Ag-LaFeO3 is of orthogonal perovskite. The sensitivity of 0.75% CNTs-Ag-LaFeO3 powder for 1 ppm formaldehyde is 13 at 86°C. The response and recovery time are 100s and 60s, respectively. Moreover, the sensor also has an obvious response for 1ppm formaldehyde at 58°C.


2016 ◽  
Vol 697 ◽  
pp. 737-740 ◽  
Author(s):  
Ming Jing Wang ◽  
Hui Ming Ji ◽  
Ya Lu Chen ◽  
Qian Qian Jia

ε-Fe2O3 is a rare and metastable iron (III) oxide phase. ε-Fe2O3/SiO2 composites were prepared by combining the reverse-micelle and sol-gel methods. An appropriate amount of Ba2+ was needed in this system to promote the formation of ε-Fe2O3 nanorods in SiO2. The size of nanorods varied with different Ba2+ addition amount and sintering procedure. Then pure ε-Fe2O3 nanorods were obtained after stripping SiO2 by etching due to NaOH aqueous solution. The as-synthesized ε-Fe2O3 nanorods were discussed using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). Interestingly, metastable ε-Fe2O3 nanorods showed a promising performance for the response for ethanol, compared with the stable phases of α-Fe2O3 and γ-Fe2O3. It indicates that nanostructure ε-Fe2O3 (including ε-Fe2O3 nanorods) could be a valuable material for the fabrication of advanced sensing devices.


2014 ◽  
Vol 809-810 ◽  
pp. 731-736
Author(s):  
Qin Zhu ◽  
Yu Min Zhang ◽  
Jin Zhang ◽  
Zhong Qi Zhu ◽  
Qing Ju Liu

A new gas sensor with high response and selectivity was fabricated by using molecularly imprinted powders (MIPs) which provide special recognition sites to methanol. The MIPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared spectrometer (FT-IR), respectively. The gas sensing properties of MIPs to methanol were investigated. The experimental results indicate that the sensors based on the MIPs show excellent gas sensing properties to methanol vapor, and the properties of the sensor with x=6:10 (x= methyl acrylic acid: LaFeO3, molar ratio) are the best. At the optimal operating temperature of 130°C, the response of the sensor (x=6:10) to 1 ppm methanol is 21, and the response and recovery times are 57 s and 67 s, respectively.


2000 ◽  
Vol 638 ◽  
Author(s):  
Elisabetta Comini ◽  
Matteo Ferroni ◽  
Vincenzo Guidi ◽  
Giuliano Martinelli ◽  
Michele Sacerdoti ◽  
...  

AbstractThe Mo-W-O thin films were deposited by RF reactive sputtering from composite target of W and Mo (20:80 weight ratio). Structural characterisation was carried out by X-ray diffraction spectroscopy and the composition of the film was obtained by Rutherford backscattering analysis. The layers were investigated by volt-amperometric technique for electrical and gas-sensing properties. The films were capable of sensing CO. No effect of poisoning of the surface was recorded and recovery of the resistance was complete. A concentration of CO as low as 15 ppm produced a relative variation in the conductance of 390% with response and recovery times of about 2 minutes at a working temperature of 200°C.


2021 ◽  
Vol 21 (9) ◽  
pp. 4916-4920
Author(s):  
Sanju Rani ◽  
Manoj Kumar ◽  
Yogesh Singh ◽  
Vidya Nand Singh

In order to have a check and balance of the toxic gases in the environment, various kinds of sensors are currently being researched upon. As many of the toxic gases are also inflammable, therefore, there is a constant search for materials which can detect the gases at lower temperatures. Also, it is important that the sensor is selective for a particular gas. To meet such requirements, nanos-tructured materials are extensively being explored for such gas sensing applications, due to their large effective surface area. And, in order to further improve the gas sensing properties, metal catalysts are deposited over such nanomaterials. The smaller sized nanoparticles show better catalytic activity due to its effective larger surface area per unit volume. Depositing bimetallic materials is thus advantageous, since it can reduce the size of nanoparticles produced. In this work, ~7 nm thick Au/Pd thin film was sputter-coated over SnSe2 nanostructured thin films. SnSe2 thin film were deposited by thermally evaporating SnSe2 powder. The materials were characterized for their structural, morphological and gas sensing properties. The ambient temperature response for 5 parts per million (ppm) NO2 gas was measured to be 117%, with the response and recovery times being 10 and 19 seconds, respectively. The performance of the sensor improved with increase in the gas concentration and for 10 ppm gas, the recorded response was 137%, with the corresponding response and recovery times being 9 and 8 seconds, respectively. The limit of detection was 655 parts per billion (ppb). The mechanism of ambient temperature high response and low response/recovery times have been discussed based on physisorption, charge transfer, Au/Pd decoration and SnSe–SnSe2 based p–n junction. In addition, an important aspect of this work worth pointing out is the deposition of a thin film consisting of nanostructured network using an industrially viable thermal evaporation method. Thus, this work opens a new dimension for 2D materials that can be used for selective gas detection at ambient temperature.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Qiong Wang ◽  
Na Yao ◽  
Chen Liu ◽  
Dongmin An ◽  
Yan Li ◽  
...  

Hollow ZnSnO3 nanospheres were synthesized by a hydrothermal method using ZnO nanospheres as the hard template and raw material simultaneously. The combined characterizations of X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HRTEM) confirmed the successful preparation of hollow ZnSnO3 nanospheres. The gas-sensing results indicated that the sensor made from hollow ZnSnO3 nanospheres exhibited high sensitivity, good selectivity, and stability to ethanol at a low operating temperature of 200°C. The sensitivity was about 32 and the response and recovery time were about 4 s and 30 s for 100 ppm ethanol, respectively. The enhancement in gas-sensing properties was attributed to the hollow nanostructures and high specific surface areas of ZnSnO3.


2019 ◽  
Vol 32 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Pushpendra Kumar ◽  
Deepak Kumar

In present study, ZnO-SnO2 nanocomposite was synthesized by co-precipitation method and its sensing properties with respect to carbon monoxide gas were investigated. X-ray diffraction pattern shows the exhaustive evolution of hexagonal wurtzite phase of ZnO and rutile phase of SnO2. Morphological study was done by FE-SEM and optical characterization was done by UV-visible spectrophotometer. To study the sensing properties, material was layered on conducting substrate and resistance was recorded in the presence of air and CO gas at different operating temperature. Sensing responses of pure ZnO and ZnO-SnO2 composite was also compared. ZnO-SnO2 showed much enhanced response along with better response and recovery time compared to pure ZnO.


2018 ◽  
Vol 5 (10) ◽  
pp. 171691 ◽  
Author(s):  
Rui Lu ◽  
Xiaoling Zhong ◽  
Shiguang Shang ◽  
Shan Wang ◽  
Manling Tang

Pure WO 3 and Ag-WO 3 (mixed solid solutions Ag with WO 3 ) have been successfully synthesized by sol-gel method and the influences of calcination temperature on the particle size, morphology of the WO 3 and Ag-WO 3 nanoparticles were investigated. Powder X-ray diffraction results show that the hexagonal to monoclinic phase transition occurs at calcination temperature varying from 300°C to 500°C. SEM images show that calcination temperature plays an important role in controlling the particle size and morphology of the as-prepared WO 3 and Ag-WO 3 nanoparticles. The NO 2 gas sensing properties of the sensors based on WO 3 and Ag-WO 3 nanoparticles calcined at different temperatures were investigated and the experimental results exhibit that the gas sensing properties of the Ag-WO 3 sensors were superior to those of the pure WO 3 . Especially, the sensor based on Ag-WO 3 calcined at 500°C possessed larger response, better selectivity, faster response/recovery and better longer-term stability to NO 2 than the others at relatively low operating temperature (150°C).


Sign in / Sign up

Export Citation Format

Share Document