scholarly journals A comparative study on the electrical and gas sensing properties of thick films prepared with synthesized nano-sized and commercial micro-sized Fe2O3 powders

2017 ◽  
Vol 11 (4) ◽  
pp. 265-274 ◽  
Author(s):  
Ali Mirzaei ◽  
Maryam Bonyani ◽  
Shahab Torkian ◽  
Mahdi Feizpour ◽  
Anna Bonavita ◽  
...  

In this work, Fe2O3 nanoparticles (NPs) were successfully synthesized by Pechini sol-gel method. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction characterizations were used to study the morphology and crystal structure of the synthesized products. The electrical and gas sensing behaviour of the synthesized and commercial Fe2O3 samples, prepared in the form of thick films, were studied. Though the commercial Fe2O3 powders had lower resistance but it was found that the synthesized Fe2O3 NPs had better gas sensing properties. The underlying mechanisms are discussed in details. The present findings show advantages of Fe2O3 NPs over micro-size particles for gas sensing applications.

2013 ◽  
Vol 873 ◽  
pp. 304-310 ◽  
Author(s):  
Jin Zhang ◽  
Yu Min Zhang ◽  
Chang Yi Hu ◽  
Zhong Qi Zhu ◽  
Qing Ju Liu

The gas-sensing properties of zinc doped lanthanum ferrite (Zn-LaFeO3) compounds for formaldehyde were investigated in this paper. Zn-LaFeO3 powders were prepared using sol-gel method combined with microwave chemical synthesis. The powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formaldehyde gas-sensing characteristics for the sample were examined. The experimental results indicate that the sensor based on the sample Zn-LaFeO3 shows excellent gas-sensing properties to formaldehyde gas. At the optimal operating temperature of 250°C, the sensitivity of the sensor based on LaFe0.7Zn0.3O3 to 100ppm formaldehyde is 38, while to other test gases, the sensitivity is all lower than 20. The response and recovery times for the sample to formaldehyde gas are 100s and 100s, respectively.


2016 ◽  
Vol 697 ◽  
pp. 737-740 ◽  
Author(s):  
Ming Jing Wang ◽  
Hui Ming Ji ◽  
Ya Lu Chen ◽  
Qian Qian Jia

ε-Fe2O3 is a rare and metastable iron (III) oxide phase. ε-Fe2O3/SiO2 composites were prepared by combining the reverse-micelle and sol-gel methods. An appropriate amount of Ba2+ was needed in this system to promote the formation of ε-Fe2O3 nanorods in SiO2. The size of nanorods varied with different Ba2+ addition amount and sintering procedure. Then pure ε-Fe2O3 nanorods were obtained after stripping SiO2 by etching due to NaOH aqueous solution. The as-synthesized ε-Fe2O3 nanorods were discussed using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). Interestingly, metastable ε-Fe2O3 nanorods showed a promising performance for the response for ethanol, compared with the stable phases of α-Fe2O3 and γ-Fe2O3. It indicates that nanostructure ε-Fe2O3 (including ε-Fe2O3 nanorods) could be a valuable material for the fabrication of advanced sensing devices.


2013 ◽  
Vol 721 ◽  
pp. 237-240 ◽  
Author(s):  
Yong Ju Liu ◽  
Qiu Ping Jiang ◽  
Yue Huan Li ◽  
He Yun Zhao

With the advantages of the microwave-assisted method, good crystalline quality SnO2nanomaterials were successfully synthesized. The morphology and microstructure of SnO2were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy and high-resolution (HRTEM) used to examine SnO2nanomaterials. Indirect-heating sensors based on nanorods were fabricated and investigated for the gas sensing properties to ethanol. The investigation demonstrates that the sensor based on prepared SnO2nanomaterials has good sensitivity, low detection limit and short response and reversion time to ethanol at 275 °C.


2010 ◽  
Vol 654-656 ◽  
pp. 1154-1157 ◽  
Author(s):  
Yu Lu ◽  
Wei Jin ◽  
Wen Chen

Polythiophene (PTP) coated V2O5 nanotubes were prepared by an in-situ polymerization of thiophene monomers in the presence of prepared V2O5 nanotubes. The nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which proved the polymerization of thiophene monomer and the strong interaction between polythiophene and V2O5 nanotubes (VONTs). The gas sensing properties of PTP coated V2O5 nanotubes were studied at room temperature, which was found that PTP coated V2O5 nanotubes could detect ethanol with much higher sensitivity than pure VONTs. The sensing mechanism of PTP coated V2O5 nanotubes to ethanol is presumed to be the synergetic interaction between polythiophene (PTP) and V2O5 nanotubes.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040003 ◽  
Author(s):  
Yifan Chen ◽  
Xiuling Ma ◽  
Chen Li ◽  
Qiuyu Wu ◽  
Yongbo Wang ◽  
...  

[Formula: see text] porous nanotubes containing oxygen vacancies were prepared by electron spinning and H plasma treatment. The morphology and crystal structure of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ethanol-sensing properties of the [Formula: see text] sensor were tested. The results show that the samples treated with H plasma for 20 min have the best performance. Its working temperature is [Formula: see text]C lower than [Formula: see text]C of the original sample, with a sensitivity of 17 at 100 ppm, which is seven times higher than the original sample. It also shows good selectivity to some common interfering gases. This enhancement can be ascribed to the introduced oxygen vacancy. This work provides an efficient way to design high-performance gas sensor materials.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550011 ◽  
Author(s):  
A. Sharma ◽  
M. Tomar ◽  
V. Gupta ◽  
A. Badola ◽  
N. Goswami

In this paper gas sensing properties of 0.5–3% polyaniline (PAni) doped SnO 2 thin films sensors prepared by chemical route have been studied towards the trace level detection of NO 2 gas. The structural, optical and surface morphological properties of the PAni doped SnO 2 thin films were investigated by performing X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Raman spectroscopy measurements. A good correlation has been identified between the microstructural and gas sensing properties of these prepared sensors. Out of these films, 1% PAni doped SnO 2 sensor showed high sensitivity towards NO 2 gas along with a sensitivity of 3.01 × 102 at 40°C for 10 ppm of gas. On exposure to NO 2 gas, resistance of all sensors increased to a large extent, even greater than three orders of magnitude. These changes in resistance upon removal of NO 2 gas are found to be reversible in nature and the prepared composite film sensors showed good sensitivity with relatively faster response/recovery speeds.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850024 ◽  
Author(s):  
MALIHEH SABERI ◽  
ALI AKBAR ASHKARRAN

Tungsten-doped TiO2 gas sensors were successfully synthesized using sol–gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV–Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001[Formula: see text]g tungsten-doped TiO2 NLs at 200[Formula: see text]C as an optimum operating temperature.


2004 ◽  
Vol 828 ◽  
Author(s):  
Wei-Jen Liou ◽  
Tsung-Yeh Yang ◽  
Kuang-Nan Lin ◽  
Ching-Hong Yang ◽  
Hong-Ming Lin

ABSTRACTThe carbon nanotubes provide large surface that can enhance the gas adsorption properties and increase the conductivity at a lower temperature for gas sensing. The gas sensing properties of the hybrid TiO2/CNTs material are examined in this study. The sol-gel technique is used to prepare a thin layer of nano-TiO2 coated on CNTs. The structure of TiO2/CNTs hybrid materials is identified by X-ray diffraction (XRD) and Raman spectrum. The granules and surface morphology are analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrical properties of the hybrid TiO2/CNTs indicate that the operation temperature can be lowered to ambient temperature and this will enhance the gas sensitivity for detecting CO gas. The n-type or p-type behavior of hybrid TiO2/CNTs can be controlled by the coating thickness of hybrid TiO2. According to the image results, the mechanisms of the n-type and p-type behavior of hybrid TiO2/CNTs system are proposed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Shengsheng You ◽  
Haojie Song ◽  
Jing Qian ◽  
Ya-li Sun ◽  
Xiao-hua Jia

The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC) microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric and differential scanning calorimetry (TG-DSC). The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.


2014 ◽  
Vol 809-810 ◽  
pp. 724-730
Author(s):  
Zan Li ◽  
Wei Qin ◽  
Xiao Hong Wu

Al-doped ZnO (AZO) powers with a novel rice-like morphology have been successfully synthesized through a simple and efficient hydrothermal approach, the products have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray analyzer and transmission electron microscopy (TEM). It showed that all the samples presented an hexagonal wurtzite structure of high crystallinity, and the microstructure was composed of numerous dumbbells. Furthermore, the heater gas sensors were fabricated and an investigation of gas sensing properties has been conducted. The sensors showed good selectivity to ethanol comparing with NH3, SO2, CO and HCHO and possible mechanism was discussed. The Sensors based AZO powers exhibited high response values, reproducible response-recovery to ethanol 50-1800 ppm at 332°C.


Sign in / Sign up

Export Citation Format

Share Document