A Probabilistic Fatigue Model for Quasi-Brittle Materials

2014 ◽  
Vol 875-877 ◽  
pp. 1239-1242 ◽  
Author(s):  
Rena C. Yu ◽  
Luis Saucedo ◽  
Gonzalo Ruiz

We aim to develop a new fatigue model valid for quasi-brittle materials like concrete, which properties have considerably larger standard deviation than metals. Having this in mind, we fit the measured strength data with a three-parameter Weibull cumulative distribution function and in turn take it as the initial distribution for an asymptotic fatigue model in concrete. We also take into account the observed influence of frequency and stress ratio on the fatigue life in concrete, both plain and reinforced with fibers. The developed model is validated against fatigue tests in compression on cubic specimens for different stress ratios and loading frequencies. The secondary strain rate is also found to be correlational with the number of cycles to failure.

2020 ◽  
Vol 205 ◽  
pp. 05001
Author(s):  
Soheib Maghsoodi ◽  
Olivier Cuisinier ◽  
Farimah Masrouri

In energy geostructures, which exploit the heat in soil using earth contact elements, the interface is subjected to cyclic thermo-mechanical loads. Monotonic and cyclic constant-volume equivalent-undrained (CVEU) direct shear tests were performed on clay-clay and clay-structure interface at different temperatures (22 and 60 °C). Different cyclic and average stress ratios (CSR and ASR) were applied to the kaolin clay-structure interface under 300 kPa of normal stress. The results showed that, the number of cycles to failure for the clay-structure interface test was lower than that for the clay-clay case in the same range of cyclic and average shear stress ratios. In cyclic clay-structure tests, decreasing the cyclic stress ratio, increased the number of cycles to failure; however, decreasing the average shear stress ratio decreased the number of cycles to failure. Increasing the temperature, decreased the rate of strain accumulation and the number of cycles to failure increased by 2-3 times. The rate of degradation (degradation parameter, t) decreased by 16% with heating from 22 to 60 °C for the different cyclic stress ratios tested.


Author(s):  
Leslie Titus-Glover ◽  
Jagannath Mallela ◽  
Michael I. Darter ◽  
Gerald Voigt ◽  
Steve Waalkes

The Portland Cement Association (PCA) pavement thickness design method for jointed concrete pavements is mechanistically based and consists of both fatigue and erosion analyses. It determines the minimum slab thickness required for a given set of site and design conditions on the basis of both fatigue and erosion criteria. At the heart of the fatigue analysis is the fatigue model, which establishes the number of allowable load repetitions for a given stress ratio [ratio of flexural edge stress caused by the application of wheel loads to the portland cement concrete (PCC) slab flexural strength]. The PCA fatigue model is based on data derived from beam fatigue tests conducted in the early 1950s and 1960s. The model estimates the conservative lower-bound estimate of the allowable number of load applications at a given stress ratio (i.e., it incorporates a high degree of reliability–-approximately 90% or higher). Although this may be desirable for high-volume, high-traffic pavements, it is too conservative for low-volume roads or street pavements. The PCA pavement thickness design method currently is being used in the American Concrete Pavement Association (ACPA) pavement design software, StreetPave. StreetPave incorporates the PCA's pavement thickness design methodology in a Windows-based user platform. ACPA commissioned a study to expand, improve, and broaden the current PCA fatigue model by including reliability as a parameter for predicting PCC fatigue damage and by calibrating the enhanced model with additional fatigue data from recently completed studies. An enhanced fatigue model was then developed.


2017 ◽  
Vol 13 (2) ◽  
pp. 262-283 ◽  
Author(s):  
Vladimir Kobelev

Purpose The purpose of this paper is to propose the new dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach. The anticipated unified propagation function describes the infinitesimal crack-length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification functions with different number of fitting parameters are proposed. On one hand, the closed-form analytical solutions facilitate the universal fitting of the constants of the fatigue law over all stages of fatigue. On the other hand, the closed-form solution eases the application of the fatigue law, because the solution of nonlinear differential equation turns out to be dispensable. The main advantage of the proposed functions is the possibility of having closed-form analytical solutions for the unified crack growth law. Moreover, the mean stress dependence is the immediate consequence of the proposed law. The corresponding formulas for crack length over the number of cycles are derived. Design/methodology/approach In this paper, the method of representation of crack propagation functions through appropriate elementary functions is employed. The choice of the elementary functions is motivated by the phenomenological data and covers a broad region of possible parameters. With the introduced crack propagation functions, differential equations describing the crack propagation are solved rigorously. Findings The resulting closed-form solutions allow the evaluation of crack propagation histories on one hand, and the effects of stress ratio on crack propagation on the other hand. The explicit formulas for crack length over the number of cycles are derived. Research limitations/implications In this paper, linear fracture mechanics approach is assumed. Practical implications Shortening of evaluation time for fatigue crack growth. Simplification of the computer codes due to the elimination of solution of differential equation. Standardization of experiments for crack growth. Originality/value This paper introduces the closed-form analytical expression for crack length over number of cycles. The new function that expresses the damage growth per cycle is also introduced. This function allows closed-form analytical solution for crack length. The solution expresses the number of cycles to failure as the function of the initial size of the crack and eliminates the solution of the nonlinear ordinary differential equation of the first order. The different common expressions, which account for the influence of the stress ratio, are immediately applicable.


Author(s):  
Yu-Jia Li ◽  
Fu-Zhen Xuan ◽  
Zheng-Dong Wang ◽  
Shan-Tung Tu

Axial force-controlled fatigue tests are conducted at various stress ratios (R) on Ti-6Al-4V specimens prepared by two different manufacturing techniques (hard turning plus polishing with and without vacuum stress relieve anneal carried out after polishing). Residual stress is measured by using X-ray diffraction. Results indicate that the surface compressive residual stress lead to an increase of fatigue limit at a given life and stress ratio. This effect decreases with increasing stress ratio R. At R = 0.6, the effect of surface residual stress on fatigue limit fades away. In addition, the location of crack initiation shifts from surface to interior when the stress ratio changes from −1 to 0.6.


Author(s):  
J. B. Jordon ◽  
M. F. Horstemeyer

A microstructure-based fatigue model is employed to predict fatigue damage in 4140 steel. Fully reversed, strain control fatigue tests were conducted at various strain amplitudes and scanning electron microscopy was employed to establish structure-property relations between the microstructure and cyclic damage. Fatigue cracks were found to initiate from particles near the free surface of the specimens. In addition, fatigue striations were found to originate from these particles and grew radially outward. The fatigue model used in this study captured the microstructural effects and mechanics of nucleation and growth observed in this ferrous metal. Good correlation of the number of cycles to failure between the experimental results and the model were achieved. Based on analysis of the mechanical testing, fractography and modeling, the fatigue life of the 4140 steel is estimated to comprise mainly of small crack growth in the low cycle regime and crack incubation in the high cycle fatigue regime.


1988 ◽  
Vol 15 (4) ◽  
pp. 524-533 ◽  
Author(s):  
Farid Taheri ◽  
Aftab A. Mufti

The purpose of this paper is to analyze the fatigue crack growth rate in groove weld with backing steel bar. The linear elastic fracture mechanics approach is used. This approach is coded in a special purpose fracture mechanics package FAST. By using FAST, the structure is modeled and analyzed by its finite element module FAST-I, and the cyclic life is estimated by its crack propagation module FAST-II.An example recently studied by Baker and Kulak is investigated by the FAST program. The S–N curve (stress range versus number of cycles to failure) obtained by FAST is compared with the curve presented by Baker and Kulak. Key words: Engineering, finite element, fracture mechanics, fatigue, steel, stress intensity factor, numerical, computer analysis, weld, stress ratio, enriched element.


2017 ◽  
Vol 44 (4) ◽  
pp. 1-8 ◽  
Author(s):  
T. Kroth ◽  
D. Lellinger ◽  
I. Alig ◽  
M. Wallmichrath

Cyclic fatigue testing and elastomer characterisation were combined to study changes in material properties and network structure of elastomers during thermal ageing. Natural rubber containing a typical additive package with carbon black was studied as a model material. The samples were aged at different temperatures in air or under a nitrogen atmosphere. The fatigue life in number of cycles to failure (S-N curves) was determined from force- and displacement-controlled fatigue tests on tensile bar specimens after different thermal ageing times. Changes in mechanical properties and crosslink density were studied by tensile tests, dynamic mechanical analysis, stress relaxation experiments, compression set measurements, swelling measurements and solid-state NMR. Changes in network density during thermal ageing are related to the interplay between the formation of new crosslinks and chain scission. The average molecular mass of the network chains was found to be a suitable parameter for comparing different characterisation methods. An initial decrease in the molecular mass between two crosslinking points due to post-curing is followed by an increase due to chain scission. A similar trend was found for fatigue life in number of cycles to failure (N) in force-controlled fatigue tests: an increase in N for short ageing times is followed by a decrease after longer ageing times.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Morteza Rahimi Abkenar ◽  
David P. Kihl ◽  
Majid T. Manzari

Increasing interest in using aluminum as the structural component of light-weight structures, mechanical devices, and ships necessitates further investigations on fatigue life of aluminum alloys. The investigation reported here focuses on characterizing the performance of cruciform-shaped weldments made of 5083 aluminum alloys in thickness of 9.53 mm (3/8 in.) under constant, random, and bilevel amplitude loadings. The results are presented as S/N curves that show cyclic stress amplitude versus the number of cycles to failure. Statistical procedures show good agreements between test results and predicted fatigue life of aluminum weldments. Moreover, the results are compared to the results obtained from previous experiments on aluminum specimens with thicknesses of 12.7 mm (1/2 in.) and 6.35 mm (1/4 in.).


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Vitor Anes ◽  
Luis Reis ◽  
Manuel Freitas

In this paper, we investigate the cyclic response of AISI 303 stainless steel subjected to non-proportional loads with different amplitude ratios between shear stresses and normal stresses. Based on the experiments, a relationship between the proportional reference load and a varied range of non-proportional loads was established. To achieve this objective, an experimental program was implemented to evaluate the non-proportional parameter Y. Then, the evolution of this parameter was analyzed with the number of cycles to failure and with the ratio between shear and normal stresses, finally, the evolution of the non-proportional parameter Y was mapped by two functions. The results show that the non-proportional response of the AISI 303 can be estimated using the two functions obtained. This allows the estimation of the relationship between non-proportional and proportional stresses as a function of the number of cycles to failure together with the relationship between shear and normal stresses. The results obtained have direct application in the evaluation of accumulated damage, assessed in real-time, resulting from variable amplitude loading spectra. This is of particular interest for the evaluation of structural health monitoring of structures and mechanical components.


Author(s):  
Kunio Hasegawa ◽  
Bohumir Strnadel

Fatigue crack growth rates are expressed as a function of the stress intensity factor ranges. The fatigue crack growth thresholds are important characteristics of fatigue crack growth assessment for the integrity of structural components. Almost all materials used in these fatigue tests are ferritic steels. As a result, the reference fatigue crack growth rates and the fatigue crack growth thresholds for ferritic steels were established as rules and they were provided by many fitness-for-service (FFS) codes. However, the thresholds are not well defined in the range of negative stress ratio. There are two types of thresholds under the negative stress ratio. That is, constant thresholds and increment of thresholds with decreasing stress ratios. The objective of this paper is to introduce the thresholds provided by FFS codes and to analyze the thresholds using crack closure. In addition, based on the experimental data, definition of the threshold is discussed to apply to FFS codes. Finally, threshold for ferritic steels under the entirely condition of stress ratio is proposed to the ASME Code Section XI.


Sign in / Sign up

Export Citation Format

Share Document