scholarly journals Thermal effects on one-way cyclic behaviour of clay-structure interface

2020 ◽  
Vol 205 ◽  
pp. 05001
Author(s):  
Soheib Maghsoodi ◽  
Olivier Cuisinier ◽  
Farimah Masrouri

In energy geostructures, which exploit the heat in soil using earth contact elements, the interface is subjected to cyclic thermo-mechanical loads. Monotonic and cyclic constant-volume equivalent-undrained (CVEU) direct shear tests were performed on clay-clay and clay-structure interface at different temperatures (22 and 60 °C). Different cyclic and average stress ratios (CSR and ASR) were applied to the kaolin clay-structure interface under 300 kPa of normal stress. The results showed that, the number of cycles to failure for the clay-structure interface test was lower than that for the clay-clay case in the same range of cyclic and average shear stress ratios. In cyclic clay-structure tests, decreasing the cyclic stress ratio, increased the number of cycles to failure; however, decreasing the average shear stress ratio decreased the number of cycles to failure. Increasing the temperature, decreased the rate of strain accumulation and the number of cycles to failure increased by 2-3 times. The rate of degradation (degradation parameter, t) decreased by 16% with heating from 22 to 60 °C for the different cyclic stress ratios tested.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Miaomiao Sun ◽  
Jiangang Yu ◽  
Shaoheng He ◽  
Zhi Ding

The stress-strain characteristics of soil depend primarily on the previous stress history and stress path, thus related to both the stress magnitude and direction. To have a better understanding of the response of soft clay under heart-shaped stress paths, 18 cyclic hollow cylinders tests were performed on undisturbed Hangzhou soft clay under different cyclic stress ratios, deviatoric consolidation ratios (K0), and loading frequencies. The result shows that as the vertical dynamic stress amplitude, K0 value, and loading frequency increase, the degradation index gradually decreases. Moreover, the degradation index of the soil under the cyclic torsion shear (CTS) test is always higher than that under the cyclic triaxial (CT) test. The increase in the amplitude of the cyclic stress ratio (CSR), K0 value, and the decrease in the loading frequency will promote the initial accumulative plastic strain and accelerate the failure rate of the soil sample; it shows that the effects of cyclic stress ratio amplitude, deviatoric consolidation ratios K0, and loading frequency on the accumulative plastic deformation of soil cannot be ignored. On the basis of the test results, a logarithmic relationship between the degradation index and the loading frequency is determined. A new empirical formula of accumulative plastic strain degradation of soft clay has been established, and its accuracy has been further verified by test data. The research results can provide theories for predicting and calculating the long-term settlement and deformation of clay foundation.


2014 ◽  
Vol 875-877 ◽  
pp. 1239-1242 ◽  
Author(s):  
Rena C. Yu ◽  
Luis Saucedo ◽  
Gonzalo Ruiz

We aim to develop a new fatigue model valid for quasi-brittle materials like concrete, which properties have considerably larger standard deviation than metals. Having this in mind, we fit the measured strength data with a three-parameter Weibull cumulative distribution function and in turn take it as the initial distribution for an asymptotic fatigue model in concrete. We also take into account the observed influence of frequency and stress ratio on the fatigue life in concrete, both plain and reinforced with fibers. The developed model is validated against fatigue tests in compression on cubic specimens for different stress ratios and loading frequencies. The secondary strain rate is also found to be correlational with the number of cycles to failure.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Zhang ◽  
Jiuting Cao ◽  
Sijie Huang

The cyclic triaxial system is used to investigate the effects of confining pressure, initial shear stress, cyclic stress ratio, and vibration frequency on the dynamic strength characteristics of saturated sand in the Wenchuan area. Results show that when the vibration frequency is constant, the dynamic strength of sand increases with the increase of the consolidation ratio. However, when the consolidation ratio exceeds a certain value, the dynamic strength of sand decreases or increases slowly. The dynamic internal friction angle first increases and then decreases with the increase of consolidation ratio, and the dynamic internal friction angle under different initial shear stresses differs by a maximum of about 12%. When the failure cycles are constant, the dynamic strength and the dynamic internal friction angle of the sand increase with the increase of vibration frequency, and the dynamic internal friction angle at different frequencies differs by a maximum of about 7%. When the cyclic stress ratio is constant, the higher the vibration frequency, the greater the cycles required to achieve the failure. As the cyclic stress ratio decreases, the influence of the vibration frequency on the failure cycles is gradually reduced.


1978 ◽  
Vol 100 (4) ◽  
pp. 416-420 ◽  
Author(s):  
D. P. Wilhem ◽  
M. M. Ratwani

Crack growth resistance for both static (rising load) and for cyclic fatigue crack growth has been shown to be a continuous function over a range of 0.1 μm to 10 cm in crack extension for 2024-T3 aluminum. Crack growth resistance to each fatigue cycle of crack extension is shown to approach the materials ordinary undirectional static crack resistance value when the cyclic stress ratio is zero. The fatigue crack extension is averaged over many cycles and is correlated with the maximum value of the crack tip stress intensity, Kmax. A linear plot of crack growth resistance for fatigue and static loading data shows similar effects of thickness, stress ratio, and other parameters. The effect of cyclic stress ratio on crack growth resistance for 2219 aluminum indicates the magnitude of differences in resistance when plotted to a linear scale. Prediction of many of these trends is possible using one of several available crack growth data correlating techniques. It appears that a unique resistance curve, dependent on material, crack orientation, thickness, and stress/physical environment, can be developed for crack extensions as small as 0.076 μm (3 μ inches). This wide range, crack growth resistance curve is seen of immense potential for use in both fatigue and fracture studies.


2016 ◽  
Vol 723 ◽  
pp. 843-848
Author(s):  
Yi Wei ◽  
Ying Zhu ◽  
Jing Ni

The combined effect of cyclic and static loads on the mechanical properties of the soft clay was experimentally investigated by conducting undrained cyclic triaxial tests on Shanghai clay. The results show that an increment in either static or cyclic load increases excess pore pressures and axial strains. For a given value of combined cyclic and static loads, the mechanical properties of the soft clay are more sensitive to the cyclic load. Furthermore, the accumulated excess pore pressure and axial strain for a larger cyclic stress ratio and a lower combined stress ratio might overcome that for a lower cyclic stress ratio and a higher combined stress ratio. The mechanical properties of the soft clay after the cyclic load was unloaded were also discussed. It was observed that the excess pore pressure and axial strain under the static load alone decrease gradually with time. The trend of them largely depends on the ratio of cyclic load to static load.


2017 ◽  
Vol 13 (2) ◽  
pp. 262-283 ◽  
Author(s):  
Vladimir Kobelev

Purpose The purpose of this paper is to propose the new dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach. The anticipated unified propagation function describes the infinitesimal crack-length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification functions with different number of fitting parameters are proposed. On one hand, the closed-form analytical solutions facilitate the universal fitting of the constants of the fatigue law over all stages of fatigue. On the other hand, the closed-form solution eases the application of the fatigue law, because the solution of nonlinear differential equation turns out to be dispensable. The main advantage of the proposed functions is the possibility of having closed-form analytical solutions for the unified crack growth law. Moreover, the mean stress dependence is the immediate consequence of the proposed law. The corresponding formulas for crack length over the number of cycles are derived. Design/methodology/approach In this paper, the method of representation of crack propagation functions through appropriate elementary functions is employed. The choice of the elementary functions is motivated by the phenomenological data and covers a broad region of possible parameters. With the introduced crack propagation functions, differential equations describing the crack propagation are solved rigorously. Findings The resulting closed-form solutions allow the evaluation of crack propagation histories on one hand, and the effects of stress ratio on crack propagation on the other hand. The explicit formulas for crack length over the number of cycles are derived. Research limitations/implications In this paper, linear fracture mechanics approach is assumed. Practical implications Shortening of evaluation time for fatigue crack growth. Simplification of the computer codes due to the elimination of solution of differential equation. Standardization of experiments for crack growth. Originality/value This paper introduces the closed-form analytical expression for crack length over number of cycles. The new function that expresses the damage growth per cycle is also introduced. This function allows closed-form analytical solution for crack length. The solution expresses the number of cycles to failure as the function of the initial size of the crack and eliminates the solution of the nonlinear ordinary differential equation of the first order. The different common expressions, which account for the influence of the stress ratio, are immediately applicable.


2019 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
Masaki Yano ◽  
Takuya Yamamoto ◽  
Yasunori Okano ◽  
Toshiyuki Kanamori ◽  
Mashiro Kino–oka

In a suspension culture of iPS cells, the shear stress generated during mixing is expected to promote differentiation of induced pluripotent stem (iPS) cells. The stress on the cells can be controlled by rotational rate and shape of impeller. However, it is difficult to optimize these operative parameters by experiments. Therefore, we have developed a numerical model to obtain the average and the maximum shear stress in two kinds of stirred tanks and an orbital shaking cylindrical container. The present results showed that the shear stress strongly depended on the type of mixing and lesser extent on the shape of the impeller. The average shear stress is larger in the shaking mode than that in the stirring mode. In contrast, the maximum shear stress is much smaller in the shaking than the stirring. These results suggest that stirring and shaking should be selectively used depending on the application


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1353 ◽  
Author(s):  
Abdollahzadeh Jamalabadi ◽  
Alamian ◽  
Yan ◽  
Li ◽  
Leveneur ◽  
...  

Performance investigation of oil journal bearings is of particular importance given the growing use of them as a support for rotary components in a wide range of industrial machines. Frictional forces and shear stresses, which are proportionate to the velocity of lubricating layers at different points in the bearing space, provide the basis for changing temperature conditions. Various factors such as rotational velocity increase, slip width reduction, and small heat transfer coefficient of lubricant cause intensification of lubricant temperature changes. In the present study, with using computational fluid dynamic (CFD) thermohydrodynamic (THD) numerical simulations, the effect of nanoparticles on the performance features of plain journal bearings is evaluated. Particularly, 3D simulation of a journal bearing is implemented using CFD which considerably improves the accuracy of results, coupled with conjugate heat transfer model for metal parts of bearings. Reynolds equation model is used to calculate the oil-film pressure developed in hydrodynamic journal bearings by applying the nano-based lubricants. The configuration of thrust bearing consists of six pads in this study. In order to reduce the modeling complexity and computational cost and because of the symmetrical geometry of the pads, simulation of a single pad is considered instead of the entire domain. In this study, TiO2 nanoparticle with different volume fraction percentages are used. The parameters that are changed to evaluate the performance of the bearing include volume fraction percentage of the nanoparticle, type of lubricant, and rotational speed. Based on the results, for all different lubricant types, the dissipation power, average shear stress, and temperature rise are increased with augmenting the rotational speed. By increasing the rotational speed from 500 to 1500 rpm, the average shear stress increases by more than 100%, 120%, and 130% for DTE 26, DTE 25, and DTE 24 lubricant types, respectively. Moreover, by increasing the rotational speed from 500 to 1500 rpm, the dissipation power, and temperature rise are increased around 600% and 800%, respectively. Furthermore, increasing nanoparticles volume fraction from 0% to 10%, increases all parameters by approximately 10% for all lubricant types and in all rotational speeds.


Sign in / Sign up

Export Citation Format

Share Document