Friction Stir Welding of Mg and Al Alloys

2014 ◽  
Vol 875-877 ◽  
pp. 1477-1482
Author(s):  
Tomáš Kupec ◽  
Ivana Hlaváčová ◽  
Milan Turňa

The work deals with welding of aluminium alloy typeAlMg4,5Mn and magnesium alloy type AZ 31 in solid state by FSW (Friction Stir Welding) process. Experiments were performed in cooperation with VÚZ PI SR (Welding Research Institute Industrial Institute of Slovak Republic) Bratislava, which has available a new installed equipment type FSW LM 060 manufactured in China. Welding parameters and conditions were proposed and approved. Quality of fabricated joints was assessed by optical microscopy, micro hardness measurement and radiographic test - RT. It was supposed that optimisation of welding parameters would allow to fabricate the joints of acceptable quality that might compete to technologies of fusion welding, including welding with concentrated power sources.

2016 ◽  
Vol 857 ◽  
pp. 228-231
Author(s):  
Ho Sung Lee ◽  
Ye Rim Lee ◽  
Kyung Ju Min

Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.


Friction stir welding has proven to be the most promising solid state joining process. It can be used to get high weldability in joining of high strength aerospace aluminium alloys and other metallic alloys which used to be low with traditional fusion welding process. This paper emphasises on finding the optimum process parameter for friction stir welding of dissimilar aluminium alloy AA6061 to AA5183 using multi criteria decision making method (MCDM). Friction stir welding was done at different tool rotational speed and transverse velocity and mechanical properties such as tensile strength, percentage elongation and hardness were studied for each weld specimen. Finally optimization was done using TOPSIS (Techniqueof Ordered Preference by Similarity to Ideal Solution). The result revealed that the tool rotational speed of 1200 rpm and welding speed of 80mm/min are the optimum welding parameters.


2019 ◽  
Vol 8 (2S3) ◽  
pp. 1625-1629

Friction stir welding has proven to be the most promising solid state joining process. It can be used to get high weldability in joining of high strength aerospace aluminium alloys and other metallic alloys which used to be low with traditional fusion welding process. This paper emphasises on finding the optimum process parameter for friction stir welding of dissimilar aluminium alloy AA6061 to AA5183 using multi criteria decision making method (MCDM). Friction stir welding was done at different tool rotational speed and transverse velocity and mechanical properties such as tensile strength, percentage elongation and hardness were studied for each weld specimen. Finally optimization was done using TOPSIS (Techniqueof Ordered Preference by Similarity to Ideal Solution). The result revealed that the tool rotational speed of 1200 rpm and welding speed of 80mm/min are the optimum welding parameters


2017 ◽  
Vol 37 (1) ◽  
pp. 6-21 ◽  
Author(s):  
C. Rajendrana ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractAA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.


10.14311/1602 ◽  
2012 ◽  
Vol 52 (4) ◽  
Author(s):  
Tomáš Kupec ◽  
Ivana Hlavačová ◽  
Milan Turňa

This paper deals with welding AZ 31Mg alloy by FSW (Friction Stir Welding) technology. Welds were fabricated with new equipment supplied from China for VUZ-PI Bratislava (Welding Research Institute — Industrial Institute). Welding parameters and conditions were proposed and tested. Joint quality was assessed by optical microscopy and microhardness measurements. The fabricated joints were sound, apart from minor inhomogeneities (cracks). It is considered that after certain adaptations of the welding parameters, and perhaps also of the welding tool, that this equipment will be capable of producing welded joints of excellent quality that can compete with any fusion welding technologies, including concentrated power sources.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


2021 ◽  
Vol 63 (9) ◽  
pp. 829-835
Author(s):  
Sare Çelik ◽  
Fatmagül Tolun

Abstract AA5754Al alloy is widely used in industry. However, as in the case of all Al alloys, the 5xxx series Al alloys cannot be easily joined through fusion welding techniques. To address this problem, in this study, the effect of double-sided friction stir welding at various tool rotational speeds (450, 710, and 900 rpm), feeding rates (40, 50, and 80 mm × min-1), and tool tilt angles (0°, 1°, 2°) on the welding parameters and mechanical and microstructural characteristics of AA5754 Al alloy was determined. Tensile strength tests and microhardness tests were performed to examine the mechanical properties of the welded specimens. The microstructures of the welded zone were examined by obtaining optical microscopy and scanning electron microscopy images. The tensile test results indicated that the specimens exhibited the highest welding performance of 95.17 % at a tool rotational speed, feed rate, and tool tilt angle of 450 rpm, 50 mm × min-1 and 1°, respectively.


2018 ◽  
Vol 144 ◽  
pp. 03002 ◽  
Author(s):  
Prabhu Subramanya ◽  
Murthy Amar ◽  
Shettigar Arun ◽  
Herbert Mervin ◽  
Rao Shrikantha

Friction stir welding (FSW) is established as one of the prominent welding techniques to join aluminium matrix composites (AMCs). It is a solid state welding process, takes place well below the melting temperature of the material, eliminates the detrimental effects of conventional fusion welding process. Although the process is capable to join AMCs, challenges are still open that need to be fulfill to widen its applications. This paper gives the outline of the friction stir welding technique used to join AMCs. Effect of process variables on the microstructure and mechanical properties of the joints, behavior of reinforcing materials during welding, effect of tool profiles on the joint strength are discussed in detail. Few improvements and direction for future research are also proposed.


Author(s):  
Gurinder Singh Brar ◽  
Manpreet Singh ◽  
Ajay Singh Jamwal

AISI 304 stainless steel is one of the grades of steel widely used in engineering applications particularly in chemical equipments, food processing, pressure vessels and paper industry. Friction crush welding (FCW) is type of friction welding, where there is a relative motion between the tool and work-piece. In FCW process, the edges of the work-piece to be joined are prepared with flanged edges and then placed against each other. A non-consumable friction disc tool will transverse with a constant feed rate along the edges of the work-piece, which leads to welding. The joint is formed by the action of crushing a certain amount of additional flanged material into the gap formed by the contacting material. The novelty of present work is that FCW removes the limitations of friction stir welding and Steel work pieces can be economically welded by FCW. Taguchi method of Design of Experiments (DOE) is used to find optimal process parameters of Friction Crush Welding (FCW). A L9 Orthogonal Array, Signal to Noise ratio (S/N) and Analysis of Variance are applied to analyze the effect of welding parameters (welding speed, RPM, tool profile) on the weld properties like bond strength. Grain refinement takes place in friction crush welding as is seen in friction stir welding. Friction crush welding process also has added advantage in reducing distortion and residual stresses.


Sign in / Sign up

Export Citation Format

Share Document