Research on the Performance of Strain Sensors Applied to Bridges

2014 ◽  
Vol 875-877 ◽  
pp. 680-684
Author(s):  
Zhi Liu ◽  
Jing Liu ◽  
Shu Ri Cai

Strengthening safety monitoring of bridges during service time and improving the capability of emergency support have become the priority of the development of China’s present transportation system. Strain sensors play a great role in bridge detection and health monitoring system. In order to overcome disadvantages of traditional resistance strain sensors, such as big temperature drift, short life and inadaptability in the environment of low temperature and humidity, new arch strain sensors have been developed. This paper mainly discusses the structural and material characteristics of this sensor, as well as the performance test analysis of this strain sensor.

2013 ◽  
Vol 330 ◽  
pp. 437-440
Author(s):  
Na Li ◽  
Zhi Jie Wang ◽  
Ke Qin Ding

Research on the field of crane health monitoring has been conducted for the strain monitoring demand on the using of key components of crane and major safety monitoring requirements of crane in China. Strain monitoring nodes based on wireless transmission network have been designed, and crane structure health monitoring system has also been developed on the basis of this technology. The system has been taken contrast experiments with strain gauge acquisition equipment on-site, and the results of experiments show that this system could not only measure accurate strain, but also realize the real-time monitoring and reflect the stress state of crane on operation in time.


Author(s):  
Ryohei Nakagawa ◽  
Zhi Wang ◽  
Ken Suzuki

Health monitoring devices using a strain sensor, which shows high sensitivity and large deformability, are strongly demanded due to further aging of society with fewer children. Conventional strain sensors, such as metallic strain gauges and semiconductive strain sensors, however, aren’t applicable to health monitoring because of their low sensitivity and deformability. In this study, fundamental design of area-arrayed graphene nano-ribbon (GNR) strain senor was proposed in order to fabricate next-generation strain sensor. The sensor was consisted of two sections, which are stress concentration section and stress detecting section. This structure can take full advantage of GNR’s properties. Moreover, high quality GNR fabrication process, which is one of the important process in the sensor, was developed by applying CVD (Chemical Vapor Deposition) method. Top-down approach was applied to fabricate the GNR. At first, in order to synthesize a high-quality graphene sheet, acetylene-based LPCVD (low pressure chemical vapor deposition) using a closed Cu foil was employed. After that, graphene was transferred silicon substrate and the quality was evaluated. The high quality graphene was transferred on the soft PDMS substrate and metallic electrodes were fabricated by applying MEMS technology. Area-arrayed fine pin structure was fabricated by using hard PDMS as a stress-concentration section. Finally, both sections were integrated to form a highly sensitive and large deformable pressure sensor. The strain sensitivity of the GNR-base sensor was also evaluated.


Soft Matter ◽  
2020 ◽  
Author(s):  
Youqiang Li ◽  
Chuang Liu ◽  
Xue Lv ◽  
shulin sun

Hydrogel-based flexible strain sensors for personal health monitoring and human-machine interaction have attracted wide interest of researchers. In this paper, hydrophobic association and nanocomposite conductive hydrogels were successfully prepared by...


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Rui Wang ◽  
Xiaoyang Zhu ◽  
Luanfa Sun ◽  
Shuai Shang ◽  
Hongke Li ◽  
...  

The development of strain sensors with high sensitivity and stretchability is essential for health monitoring, electronic skin, wearable devices, and human-computer interactions. However, sensors that combine high sensitivity and ultra-wide detection generally require complex preparation processes. Here, a novel flexible strain sensor with high sensitivity and transparency was proposed by filling a multiwalled carbon nanotube (MWCNT) solution into polydimethylsiloxane (PDMS) channel films fabricated via an electric field-driven (EFD) 3D printing and molding hybrid process. The fabricated flexible strain sensor with embedded MWCNT networks had superior gauge factors of 90, 285, and 1500 at strains of 6.6%, 14%, and 20%, respectively. In addition, the flexible strain sensors with an optical transparency of 84% offered good stability and durability with no significant change in resistance after 8000 stretch-release cycles. Finally, the fabricated flexible strain sensors with embedded MWCNT networks showed good practical performance and could be attached to the skin to monitor various human movements such as wrist flexion, finger flexion, neck flexion, blinking activity, food swallowing, and facial expression recognition. These are good application strategies for wearable devices and health monitoring.


2015 ◽  
Vol 4 (2) ◽  
pp. 5-12
Author(s):  
B. Ponmalathi ◽  
◽  
M. Shenbagapriya ◽  
M. Bharanidharan ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document