Crack Growth Study of Dissimilar Steels (Stainless - Structural) Butt and Overlap Welded Unions under Cyclic Load

2014 ◽  
Vol 891-892 ◽  
pp. 1645-1650
Author(s):  
Andrés L. García Fuentes ◽  
Alberto Velásquez del Rosario

This study describes the mechanisms of emergence and propagation of fatigue cracks caused by mechanical tension stress fluctuations in dissimilar steels butt and overlap welded joints under axial tension fatigue loads. A structural (ASTM A537, class I) and a stainless (ASTM A240, 304L) were soldiers through GMAW, Argon as protecting gas and a stainless (ASTM A240, 308L) as a supplier material, not being submitted to pre and post welding thermal treatment. Microstructures (Scanning Electron Microscopy, SEM) were contrasted in different zones of each joint, focus on Heat Affected Zone (HAZ) and fusion lines. Samples were inspected by not destructive test (penetrating liquids and ultrasound), to discard surface and internal defects. The following mechanical tests were compared between both welding joint (WJ): Vickers hardness profile, tension, bending, impact, axial fatigue, and speed of propagation of fatigue cracks. Vickers show high values of micro hardness in the HAZ, near the fusion line between weld and stainless. Tension and axial fatigue tests indicated similar behavior between WJ and structural (butt joint); and similar behavior between WJ and stainless (overlap joint). Pre-cracked test evidence a faster growth of crack in the fusion line between structural steel and stainless. Dissimilar unions (butt and overlap) have mechanical and microstructure properties, which can be considered adequate to withstand the mechanical requirements in service conditions, despite relatively high values of hardness in the HAZ, particularly in the fusion line between the welding cord and the stainless 304L, as well as inclusions between the structural and the stainless one.

1974 ◽  
Vol 188 (1) ◽  
pp. 321-328 ◽  
Author(s):  
W. J. Evans ◽  
G. P. Tilly

The low-cycle fatigue characteristics of an 11 per cent chromium steel, two nickel alloys and two titanium alloys have been studied in the range 20° to 500°C. For repeated-tension stress tests on all the materials, there was a sharp break in the stress-endurance curve between 103 and 104 cycles. The high stress failures were attributed to cyclic creep contributing to the development of internal cavities. At lower stresses, failures occurred through the growth of fatigue cracks initiated at the material surface. The whole fatigue curve could be represented by an expression developed from linear damage assumptions. Data for different temperatures and types of stress concentration were correlated by expressing stress as a fraction of the static strength. Repeated-tensile strain cycling data were represented on a stress-endurance diagram and it was shown that they correlated with push-pull stress cycles at high stresses and repeated-tension at low stresses. In general, the compressive phase tended to accentuate cyclic creep so that ductile failures occurred at proportionally lower stresses. Changes in frequency from 1 to 100 cycle/min were shown to have no significant effect on low-cycle fatigue behaviour.


1952 ◽  
Vol 19 (1) ◽  
pp. 54-56
Author(s):  
F. A. McClintock

Abstract A statistical analysis is developed to show how a microscopic shear failure can result in the apparent tensile failure of polycrystalline iron in rotary bending fatigue tests.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2681
Author(s):  
Annamaria Visco ◽  
Cristina Scolaro ◽  
Antonino Quattrocchi ◽  
Roberto Montanini

Polymeric joints, made of biomedical polyethylene (UHMWPE) nanocomposite sheets, were welded with a diode laser. Since polyethylene does not absorb laser light, nanocomposites were prepared containing different percentages by weight of titanium dioxide as it is a laser absorbent. The joints were first analyzed with static mechanical tests to establish the best percentage weight content of filler that had the best mechanical response. Then, the nanocomposites containing 1 wt% titanium dioxide were selected (white color) to be subjected to fatigue tests. The experimental results were also compared with those obtained on UMMWPE with a different laser light absorbent nano filler (carbon, with greater laser absorbing power, gray in color), already studied by our research team. The results showed that the two types of joints had an appreciable resistance to fatigue, depending on the various loads imposed. Therefore, they can be chosen in different applications of UHMWPE, depending on the stresses imposed during their use.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Ruslan Sikhamov ◽  
Fedor Fomin ◽  
Benjamin Klusemann ◽  
Nikolai Kashaev

The objective of the present study was to estimate the influence of laser shock peening on the fatigue properties of AA2024-T3 specimens with a fastener hole and to investigate the possibility to heal the initial cracks in such specimens. Fatigue cracks of different lengths were introduced in the specimens with a fastener hole before applying laser shock peening. Deep compressive residual stresses, characterized by the hole drilling method, were generated into the specimens by applying laser shock peening on both sides. Subsequently, the specimens were subjected to fatigue tests. The results show that laser shock peening has a positive effect regarding the fatigue life improvement in the specimens with a fastener hole. In addition, laser shock peening leads to a healing effect on fatigue cracks. The efficiency of this effect depends on the initial crack length. The effect of laser shock peening on the fatigue life periods was determined by using resonant frequency graphs.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 893 ◽  
Author(s):  
Yongyun Zhang ◽  
Ensheng Feng ◽  
Wei Mo ◽  
Yonghu Lv ◽  
Rui Ma ◽  
...  

316L stainless steel samples are fabricated by metal injection molding using water-atomized and gas-atomized powder with different oxygen contents. The influences of oxygen on the microstructural evolution and fatigue properties of the samples are investigated. The oxygen tends to react with Mn and Si to form oxide particles during sintering. The oxides hamper the densification process and result in decreased sintered density. Moreover, their existence reduces the Mn and Si dissolving into the base metal and compromises the solution strengthening effect. The oxides lead to stress concentration in the tensile and fatigue tests and become the initiation sites of fatigue cracks. After sintering, the samples made from the gas-atomized powder have a much lower oxygen content compared to those made from the water-atomized powder, therefore, exhibiting much better mechanical properties. The tensile strength, yield strength and the elongation of the samples made from the gas-atomized powder are 560 MPa, 205 MPa, and 58%, respectively. Their fatigue lives are about one order of magnitude longer than the samples made from water-atomized powder, and also longer than those fabricated by powder metallurgy and selective laser sintering which were reported in other studies.


2011 ◽  
Vol 110-116 ◽  
pp. 1155-1160
Author(s):  
K.N. Pandey ◽  
Yogesh K. Tembhurne

Composite materials are now a day most frequently used materials in aerospace structures. Mechanically fastened joints are usually used there for joining process due to number of advantages over other conventional joints. These joints are easy to assemble and dissemble and are cheaper. However, they create stress concentration near the hole, leading to source of nucleation and subsequent propagation of cracks under cyclic loading. They also increase weight of the system tat may nullify the advantages we get from composite materials. The present work intent to find fatigue life of two composite laminates usually employed in spacecraft structures. The composites studies are fiberglass reinforced Plastic (FRP) and Carbon Reinforced Plastic (CRP). After preparing the composites, moisture, tension and fatigue tests were conducted on both composites. To know the behavior under damped condition, absorption tests were conducted. Fatigue tests were done both under as plate and butt joint conditions. It was found that in bolted joint condition, both CRP and FRP plates fails in net tension at minimum load but for maximum load they fail in shear.


1990 ◽  
Vol 112 (1) ◽  
pp. 68-79 ◽  
Author(s):  
D. A. Boismier ◽  
Huseyin Sehitoglu

Isothermal fatigue tests, out-of-phase and in-phase thermo-mechanical fatigue tests were performed on Mar-M247 nickel-based superalloy. The experiments were conducted in the temperature range 500°C to 871°C. Results indicate that the lives differ with strain-temperature phasing and with strain rate. The results of out-of-phase thermo-mechanical tests correspond well with strain-life data of isothermal tests conducted at the peak temperature (871°C). However, the in-phase thermo-mechanical results differed depending on the strain amplitude. Significant surface and crack tip oxidation and gamma prime depletion has been observed based on metallographic and Auger Spectroscopic analyses. These changes were measured as a function of time. The environment induced changes significantly influenced the fatigue lives in isothermal and out-of-phase thermo-mechanical fatigue cases. In these cases transgranular cracking was observed. Grain boundary crack nucleation and grain boundary crack growth dominated the in-phase thermo-mechanical fatigue cases. Based on these observations the requirements for a life prediction model are outlined. The life prediction model and the predictions are given in Part 2 of this paper.


Author(s):  
D. Green ◽  
R. D. Smith ◽  
J. P. Taggart ◽  
D. Beardsmore ◽  
S. Robinson

Thermal fatigue cracks have been found in austenitic pipe work in many pressurised water reactors, caused by thermal cycling due to the passage of water at different temperatures along the pipe inner surface. The rates of crack initiation and growth for this situation are not well understood because of the stochastic nature of the temperature fluctuations. Therefore, large allowances must be made when assessing the integrity of this pipe work to this failure mechanism. Improved assessment of crack initiation and growth could enable increased plant availability, and better safety cases. A programme of work has been completed consisting of fatigue tests on thick 304L butt-welded pipe specimens, and accompanying predictions of crack initiation and growth. In each test, uniform thermal cycles were generated using a water jet on a small area of the pipe. The magnitude of the cycles differed between the tests. Crack initiation and growth were monitored using a dye penetrant technique, applied to the pipe inner and outer surfaces, together with destructive examination. Crack initiation predictions were made using fatigue data derived from mechanical fatigue tests on the same material as in the pipe specimens. Good predictions were made using a strain-life endurance curve at a temperature corresponding to the average temperature of the metal surface during the thermal cycle. Crack growth predictions were based on an inelastic finite-element model accounting for cyclic hardening, and an enhanced R5 procedure (1) with crack closure taken into account. A linear elastic fracture mechanics definition of a Paris law for crack growth was used, and plastic redistribution effects were included. Predictions were good for all of the experimental scenarios carried out. A further experimental and analytical programme is in hand using the same experimental arrangements, concerning variable amplitude thermal loading.


2004 ◽  
Vol 261-263 ◽  
pp. 1239-1244
Author(s):  
Wen Xian Sun ◽  
S. Nishida ◽  
Nobusuke Hattori ◽  
X.L. Yue

In the present study, fatigue tests have been performed to study the effect of pre-strain on fatigue properties of NHH (New Head-Hardened) rail. The objectives of this study were: (1) to observe the microscopic behavior of specimens during pre-strain process, (2) to research the influence of pre-strain on fatigue strength of NHH rail and (3) to investigate initiation and propagation behavior of the fatigue crack. The results showed that plastic pre-strain decreased the fatigue strength of NHH rail; fatigue limits had no obvious variation among the different pre-strain ratios. Fatigue cracks initiated in the microscopic cracking or slip lines that were originated in the pre-strain process and propagated from these sites in the later fatigue test.


Sign in / Sign up

Export Citation Format

Share Document