Numerical Study on Normal Stress Distributions in a Single-Lap Adhesive Joint

2014 ◽  
Vol 893 ◽  
pp. 685-689
Author(s):  
Xiao Cong He ◽  
Yu Qi Wang

Adhesively bonding is becoming a widespread candidate technique for joining light-weight structural components. This paper investigates normal stress distribution in a single-lap adhesive joint using finite element method. Five layers of solid elements were used across the adhesive for obtaining an accurate indication of the variation of normal stress. All the numerical results obtained from the finite element analysis show that the spatial distribution of normal stress are similar for different interfaces. It can also be seen from the results that the left hand region is subjected to very high stress.

2012 ◽  
Vol 530 ◽  
pp. 9-13 ◽  
Author(s):  
Xiao Cong He

This paper investigates normal stress distribution of a single-lap adhesively bonded joint under tension using the three-dimensional finite element methods. Five layers of solid elements were used across the adhesive layer thickness in order to obtain an accurate indication of the variation of normal stress. All the numerical results obtained from the finite element analysis show that the spatial distribution of normal stress are similar for different interfaces though the stress values are obviously different. It can also be seen from the results that the left hand region, which is very close to the left free end of the adhesive layer, is subjected to very high stress and the magnitude of the normal stress oscillates in value close to the left end of the adhesive layer.


2013 ◽  
Vol 467 ◽  
pp. 327-331
Author(s):  
Xiao Cong He

Shear stress distribution behaviour of a single-lap bonded joint under tension was investigated using the three-dimensional finite element methods. Five layers of 20-node solid elements were used across the adhesive layer thickness to get accurate indication of the variation of shear stress. The stress distributions in the joint are given by the stress contours. All the numerical results obtained from the finite element analysis show that the spatial distribution of shear stress are similar for all 6 interfaces though the stress values are obviously different. It can also be seen from the results that the left hand region is subjected to very high stress.


2007 ◽  
Vol 348-349 ◽  
pp. 949-952 ◽  
Author(s):  
Xiao Ling Zheng ◽  
Ming Song Zhang ◽  
Min You ◽  
Hai Zhou Yu ◽  
Zhi Li

The normal stress distributed in the mid-bondline of the adhesively bonded joint under cleavage loading was investigated using the elastic finite element method (FEM) and the strain gauges method to reveal the real normal stresses distribution in the metal-to-metal joint while the load was increased. The results from the finite element analysis (FEA) showed that there is always a peak stress of the normal stress Sy in the mid-bondline occurred at a point close to the loading pin axis. When the load was increased from 0.5 kN to 3 kN, there was also a point located at about x = 16mm along the length of specimen where there is without any normal stress at all. The result of stress Sy from the FEA is nearly the same as that one obtained from the strain gauges method. It was also found that there was a evidently hardness change in the bonded zone of the adherend made from structural steel or pure copper, which can be used to explain the procedure of the joint and discuss the distribution model of the normal stress Sy in the joint under the cleavage loading.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


1996 ◽  
Vol 12 (03) ◽  
pp. 167-171
Author(s):  
G. Bezine ◽  
A. Roy ◽  
A. Vinet

A finite-element technique is used to predict the shear stress and normal stress distribution in adherends for polycarbonate/polycarbonate single lap joints subjected to axial loads. Numerical and photoelastic results are compared so that a validation of the numerical model is obtained. The influences on stresses of the overlap length and the shape of the adherends are studied.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Roman Kvasov ◽  
Lev Steinberg

This paper presents the numerical study of Cosserat elastic plate deformation based on the parametric theory of Cosserat plates, recently developed by the authors. The numerical results are obtained using the Finite Element Method used to solve the parametric system of 9 kinematic equations. We discuss the existence and uniqueness of the weak solution and the convergence of the proposed FEM. The Finite Element analysis of clamped Cosserat plates of different shapes under different loads is provided. We present the numerical validation of the proposed FEM by estimating the order of convergence, when comparing the main kinematic variables with an analytical solution. We also consider the numerical analysis of plates with circular holes. We show that the stress concentration factor around the hole is less than the classical value, and smaller holes exhibit less stress concentration as would be expected on the basis of the classical elasticity.


2020 ◽  
pp. 073168442093844 ◽  
Author(s):  
Navid Shekarchizadeh ◽  
Reza Jafari Nedoushan ◽  
Tohid Dastan ◽  
Hossein Hasani

This paper deals with investigating the tensile characteristics of biaxial weft-knitted reinforced composites in terms of stiffness, strength and failure mechanism. The biaxial weft-knitted fabric was produced on an electronic flat knitting machine by E-glass yarns and then was impregnated with epoxy resin. Using an accurate geometrical model, the composite unit cell was designed in Abaqus software’s environment. Tensile tests were simulated in different directions on the created unit cell and the stiffness was calculated. By applying the proper failure theories, the composite strength was predicted and then critical regions of the unit cell were determined. In the next step, a micromechanical approach was also applied to estimate the same tensile features. Failure theories were also applied to predict the strength and most susceptible areas for failure phenomenon in the composite unit cell. The tensile properties of the produced composites were measured and compared with outputs of the finite element and micromechanical approaches. The results showed that the meso-scale finite element analysis approach can well predict the composite strength. In contrast, the meso-scale analytical equation model was not able to predict it acceptably because this model ignores the strain concentration. Both meso-scale finite element analysis and meso-scale analytical equation approaches predicted the similar locations for the composite failure in wale and course directions.


2014 ◽  
Vol 60 (3) ◽  
pp. 323-334 ◽  
Author(s):  
G. Leonardi

Abstract The paper presents a numerical study of an aircraft wheel impacting on a flexible landing surface. The proposed 3D model simulates the behaviour of flexible runway pavement during the landing phase. This model was implemented in a finite element code in order to investigate the impact of repeated cycles of loads on pavement response. In the model, a multi-layer pavement structure was considered. In addition, the asphalt layer (HMA) was assumed to follow a viscoelastoplastic behaviour. The results demonstrate the capability of the model in predicting the permanent deformation distribution in the asphalt layer.


Sign in / Sign up

Export Citation Format

Share Document