The Structural and Surface Morphology of Annealed ZnO Films

2014 ◽  
Vol 903 ◽  
pp. 73-77
Author(s):  
Peh Ly Tat ◽  
Karim bin Deraman ◽  
Rosli Hussin ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Zuhairi Ibrahim

ZnO thin films were deposited on the glass substrates via the sol-gel dip coating method. The films were annealed at various temperatures ranging from 350 °C to 550 °C. X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the effect of annealing temperature on the structural and morphology properties of the films. The as grown films exhibited amorphous pattern while annealed films were polycrystalline structure with (002) preferential growth along c-axis orientation. The AFM micrographs revealed that the RMS roughness of the films increased as the annealing temperature increased. The grain size was ranging from 32.1 nm to 176.0 nm as the annealing temperature increased from 350 °C to 450 °C and decreased to 56.1 nm for 550 °C.

2014 ◽  
Vol 970 ◽  
pp. 120-123 ◽  
Author(s):  
Peh Ly Tat ◽  
Karim bin Deraman ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Rosli Hussin ◽  
Zuhairi Ibrahim

Undoped nanocrystalline ZnO thin films were deposited onto the glass substrates via the low cost sol-gel dip coating method. The as-grown ZnO films were annealed at the temperatures ranging from 400 °C to 550 °C. The X-ray diffraction (XRD) pattern revealed that the annealed ZnO films were polycrystalline with hexagonal wurtzite structure and majority preferentially grow along (002) c-axis orientation. Atomic force microscopy (AFM) micrographs showed the improvement of RMS roughness and grain size as annealing temperature increased. The ZnO films that annealed at 500 oC exhibited the lowest resistivity value.


2011 ◽  
Vol 233-235 ◽  
pp. 2970-2974 ◽  
Author(s):  
Ruo Yu Chen ◽  
Jian Wu Wang ◽  
Hong Ning Wang ◽  
Wei Yao ◽  
Jing Zhong

The porous SiO2/TiO2bilayer antireflection coatings with self-cleaning capacity have been prepared by a sol-gel dip-coating method, the surfactant template, Pluronic F123 (PF123) was added to the sol as a pore generator. The performances of the coatings were analyzed with ultraviolet visible spectrophotometer (UV-Vis), scanning electron microscope (SEM) and atomic force microscopy (AFM). The self-cleaning function of coatings was evaluated by means of photocatalytic degradation of methyl orange in aqueous solution, and mechanical strength of the coatings has also been studied. The results indicate that the average transmittance of porous SiO2/TiO2coating increases by 6% as compared to uncoated glass, the coating has a small particle size, a porous structure and a low roughness. After illuminated by ultraviolet light for 3 h, the 5 mg/L methyl orange can be degraded by 56.5%. In addition, the coating has an excellent mechanical strength.


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


Author(s):  
G. Celichowski ◽  
K. Chrobak

Fluorocyclophospazenes’ derivatives were used as modifiers for improving tribological properties of thin films prepared by sol-gel technique. Thin films were made on the base of aminopropyltriethoxysilane (APTS). All films were deposited by dip-coating method and post-treated by heat, UV radiation and low pressure of RF plasma. Chemical changes in sol-gel films during all steps of post-treatments and modifications were monitored by FT-IR spectroscopy and SIMS spectrometry. Topographies of modified surfaces were imaged by Atomic Force Microscopy (AFM). After final modification significant improvements of frictional properties were observed as well as their very good thermal stability.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2701-2706
Author(s):  
Guillermo Carbajal-Franco ◽  
Pedro A. Ortiz-Vázquez ◽  
Alejandro Ávila-García

ABSTRACTGas monitoring is a relevant activity for industrial and domestic applications due to usage of dangerous gases as methane, which has been increasingly used as domestic and industrial fuel. In this field of research, metallic oxides such as SnO2, ZnO and Fe2O3 have been widely studied, but we are far from reaching the total understanding of all the parameters that can be varied; in order to improve the gas sensing properties of the metallic oxides. In this work, we present the change of properties derived from using different solvents during the preparation of SnO2 nanoparticles via the sol-gel process. The nanoparticles suspended in two different solvents were deposited on glass substrates by the dip-coating method. The addition of Sb as a dopant was studied at two different Sb:Sn ratios of 1:99 and 1:2. SEM showed differences in the nanostructured topology of the samples and EDS analysis was performed to determine the elemental composition of the samples and the ratios of doping. XRD spectroscopy was used to determine the phase of the materials and the crystallite size. Measurements of the electric response of the coatings to methane, under controlled conditions at different temperatures, were carried out and curves of sensitivity versus temperature were obtained.


2014 ◽  
Vol 898 ◽  
pp. 33-36 ◽  
Author(s):  
Cai Zhen Zhang ◽  
Yong Gang Chen ◽  
Su Liu

Na/Mg co-doped (Na,Mg):ZnO films were fabricated on pyrex glass substrates by sol-gel spin-coating method. Effects of annealing on properties of the films were particularly investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmittance spectra. The internal stress of the films annealed at different temperature was calculated. Experimental and analytical results show that some NaCl freeze-out derivatives will appear on films when the annealing temperature is too low, with the increasing annealing temperature, the c-axis tensile stress is sharply decreased first, then the c-axis stress was changed into press stress and its value is increased continuously, so the structural, surface and the optical properties of the films improve first and deteriorate afterwards.


Optik ◽  
2013 ◽  
Vol 124 (23) ◽  
pp. 6201-6204 ◽  
Author(s):  
A. Ranjitha ◽  
N. Muthukumarasamy ◽  
M. Thambidurai ◽  
R. Balasundaraprabhu ◽  
S. Agilan

2012 ◽  
Vol 465 ◽  
pp. 165-171
Author(s):  
Jin Ming Liu ◽  
Xiao Ru Zhao ◽  
Li Bing Duan ◽  
Xiao Jun Bai ◽  
Ning Jin ◽  
...  

Anatase TiO2- thin films on glass substrates were prepared by sol-gel dip-coating method. We designed a multi-round annealing process which was under the air pressure of 5 Pa and then 5×10-2 Pa for one hour each at 550 °C, and such process was repeated for three times. The special designed annealing process can obviously improve the conductivity of the udoped TiO2- thin films. The minimum resistivity of the undoped TiO2- thin films reached 0.8 Ω cm after being treated by the multi-round annealing process. It was demonstrated that such annealing process was an effective way to increase the defects in TiO2- thin films such as oxygen vacancies. The average transmittances of the films were approximately 60~80% in the visible range with the forbidden gaps of 3.25~3.35 eV. After the multi-round annealing process, the optical forbidden gaps of the films became narrowed slightly, which might be also related to the defects introduced during the multi-annealing process.


2013 ◽  
Vol 678 ◽  
pp. 103-107 ◽  
Author(s):  
Arumugam Ranjitha ◽  
Natarajan Muthukumarasamy ◽  
Santhanam Agilan ◽  
Mariyappan Thambidurai ◽  
Rangasamy Balasundraprabhu ◽  
...  

Nanocrystalline TiO2 thin films were prepared by sol-gel dip coating method. The structural investigations were carried out using x-ray diffraction technique. Anatase TiO2 thin films with tetragonal phase were obtained and the grain size was observed to lie in the range of 21-25 nm. Analysis on the surface topography of prepared films have been carried out using atomic force microscopy (AFM). The band gap energy is calculated from the absorption spectra of TiO2 films and is found to lie in the range 3.3 to 3.7 eV.


2021 ◽  
Author(s):  
Taner Kutlu ◽  
Necdet H. Erdogan ◽  
Nazmi Sedefoglu ◽  
Hamide Kavak

Abstract This study reports the effect of annealing temperature on the structural, morphological, and optical properties of ZnO (Zinc Oxide) thin films deposited on a glass substrate by the sol-gel spin coating method. Those properties of ZnO were examined with UV-Vis, Fourier transform infrared (FTIR) and Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray diffraction (XRD), before and after annealing. XRD results revealed that all the samples had a highly c-axis oriented wurtzite structure. A 1 (LO) mode in Raman spectra also confirmed the highly oriented ZnO films. Optical measurement indicated that transmittance of the films was above %85, and the optical band gap slightly decreased with the increasing annealing temperature from 350 to 550 °C. Morphological analysis displayed that increasing annealing temperature improved surface morphology and enlarged the grain size from 2-3 nm for as-deposited samples to 150 nm for annealed at 550 °C.


Sign in / Sign up

Export Citation Format

Share Document