Vibration and Noise Analysis for a Motor of Pure Electric Vehicle

2014 ◽  
Vol 915-916 ◽  
pp. 98-102 ◽  
Author(s):  
Meng Bao ◽  
En Wei Chen ◽  
Yi Min Lu ◽  
Zheng Shi Liu ◽  
Shuai Liu

To control the pure electric vehicle motors vibration and noise, the dynamic characteristics of the motor are analyzed. Dynamic characteristic include the natural frequency and response characteristics of different parts of the motors structural member. This paper uses three-dimensional software Pro/E modeling of the motor: By making appropriate assumptions and equivalent treatment of the motors stator, rotor core and coil winding, establish the finite element simulation model of the various components .Using the finite element analysis software Workbench analyzes the windings and motor model modal analysis, to get natural frequency of each mode. To make a modal analysis test, we can use hammering method done on the motor. By using real-time signal analyzer AWA6291 make spectral analysis of the motor online, comprehensive comparative analysis of the results and used to guide motor design.

2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


Author(s):  
Robert A. MacNeill ◽  
Glenn Gough

Train carbody and truck structures are designed to exhibit primary natural frequency modes great enough to avoid unwanted resonant oscillations with normal track interactions. Critical bounce modes can be excited by typical track in the 2–4 Hz range. Trains are designed with first modes above this threshold. Historically, simplified approaches are employed to predict natural frequencies of the main truck and carbody train structures independently. Since the advent of high powered computing, more detailed finite element analysis (FEA) eigenvalue approaches have been used to more accurately predict natural frequency of structures. Still, the typical FEA approach uses simplified boundary conditions and partial models to determine natural frequencies of individual components, neglecting the interaction with other connected structures. In this paper, a detailed, holistic approach is presented for an entire Light Rail Vehicle (LRV). The analysis is performed on a fully detailed FEA model of the LRV, including trucks and suspension, carbody structures, non-structural mass, articulation, as well as intercar and truck-carbody connections. The model was developed for detailed crashworthiness investigations, which requires a high level of fidelity compared to what is typically required for static and modal analysis. Using the same model for multiple purposes speeds up development while also improving the accuracy of the analyses. In this paper, the modal analysis methodology developed is described. A case study is presented investigating the often neglected contribution of windows, cladding, and flooring on the overall carbody natural frequency.


2014 ◽  
Vol 635-637 ◽  
pp. 312-315
Author(s):  
Lin Hong ◽  
Ying Jie Li

A star sprocket is an important component of U-shaped slide chain conveyor, so it is particularly important to be analyzed. It conducts modal analysis of star sprocket by using large finite element analysis software, ANSYS, calculates natural frequencies of the first five and the corresponding modes and analyzes natural frequency affected by sprocket tooth thickness. The result provides basic theory for dynamic optimization analysis of U-shaped slide chain conveyor.


2012 ◽  
Vol 151 ◽  
pp. 424-428
Author(s):  
Zhong Liang Cao ◽  
Yan Ding ◽  
Qing Ming Hu ◽  
Qiang Guo

Fixed beam gantry for large CNC boring and milling machine to bear the beams on the rail side apron, and other parts ram weight under weight and size of deformation produced a result of the assembly accuracy of less than standard, use three-dimensional modeling software UG and finite element analysis software ANSYS for dynamic beam gantry milling machine CNC beam three-dimensional modeling and modal analysis, based on weight and apron beams, the weight of ram and other components in relative deformation amplitude, and the gantry milling machine processing characteristics and overall design of the structural characteristics of machine tools, assembly of the beam is proposed to note some issues and some ways to solve the assembly size requirements, through finite element analysis of the deformation and comparing the actual measured value, the experiment proved data on-site assembly solution with a good theoretical support.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1201-1205
Author(s):  
Hong Ren ◽  
Fan Chun Li ◽  
Tian Yu Zhao

The present work is aimed to free vibration characteristics of marine propeller in fluid, and analyze the influence of fluid inertial effect on propeller. The fully coupled three dimensional finite element method is applied, and the commercial finite element code, ANSYS WORKBENCH, has been used to perform modal analysis for both wet and dry configurations via fluid-structure interaction APDL commands for secondary development. On this basis, analyze a marine propeller in air and in fluid with finite element analysis, then the differences of natural vibration frequencies and vibration modes of the propeller for different boundary conditions are discussed. In addition, the natural frequencies curves are presented. Results show that the natural frequencies of propeller in fluid are significantly lower than those in air, the fluid inertia effect also has some influences on vibration mode.


2011 ◽  
Vol 347-353 ◽  
pp. 1276-1280
Author(s):  
Hong Liang Hu ◽  
Rui Jie Wang ◽  
Chun Ling Meng ◽  
Guo Feng Li

Abstract. Combining characteristic of the Wind Tturbines's rotary support, using finite element method, the paper probe the rotary support finite element analysis of static and modal analysis. Through the static analysis of the rotary support, receiving the deformation and stress-strain results; through modal analysis,receiving the 6-order natural frequency and vibration shape.Analyzing of the main failure forms and Dynamic performance ,the results provide a theoretical basis of improvement of the design and to finalize the program.


2014 ◽  
Vol 490-491 ◽  
pp. 1190-1193
Author(s):  
Na Liu ◽  
Dian Long Zou ◽  
Tian Jiao Zhou ◽  
Jian Wei Zhao

This paper researched dynamic characteristics of 5-DOF scraper chain handling robot by finite element modal analysis. Firstly established the whole three-dimensional model with Solidworks, secondly, transferred it into the ANSYS finite element analysis software to analyze dynamic characteristics in two fixed work positions when it was grasping a scraper chain and carrying a scraper chain on a rail line. It was found the weak component which vibrated heavily was the big arm from the analysis of the top 5 order vibration mode. Then studied modal analysis of the big arm to obtain the its inherent frequency and vibration mode. Finally put forward some suggestions about the design of the handling robot and improved its dynamic characteristics which is meaningful to increase its stability and reliability.


2011 ◽  
Vol 105-107 ◽  
pp. 204-207
Author(s):  
Jian Dong Shang ◽  
Jun Qi Guo ◽  
Dong Fang Hu

The vibration is a high-precision machine tool components in the design of the major issues, facing its precision has a great influence, so column parts of its modal analysis is necessary. Creating three-dimensional finite element model of the column, using finite element analysis software ANSYS modal analysis of the column, which can reached the first five natural frequencies and mode shapes. Column Part of our understanding of dynamic performance and improve the machining accuracy is helpful. Modal analysis method is the dynamic performance of the column on the main approach, which mainly is to determine the vibration characteristics of the column that is the natural frequency and vibration mode, which we can determine the modes of processing accuracy, and thus the relevant parts of the machine column can be optimized so that it meet the requirements.


2013 ◽  
Vol 546 ◽  
pp. 122-126
Author(s):  
Xiao Long Hu ◽  
Zhong Bao Qin ◽  
Jian Feng Guo ◽  
Ying Juan Yue

This paper discussed the impact of the quantity and position of constraint on the natural frequency of special high-pressure seamless cylinders. The Finite Element modal of the special high-pressure seamless cylinders was constructed based on ANSYS12.0. The vibration frequencies and modal shapes under different conditions were obtained by the Finite Element analysis. The result will be used for improving the safe capability of the Special High-pressure Seamless Cylinders.


Sign in / Sign up

Export Citation Format

Share Document