Seismic Performance Analysis of Steel Reinforced Concrete Frame-Concrete Core Wall Structure

2011 ◽  
Vol 243-249 ◽  
pp. 740-745 ◽  
Author(s):  
Qing Ning Li ◽  
Qing Mei Liu ◽  
Lin Zhao

A steel reinforced concrete frame-concrete core wall structure is taken as the research object in this paper. The whole space finite element models are established by software ETABS, modal analysis, response spectrum method and elastic time-history analysis are conducted. And static elastio-plastic time history analysis of the high-rise structure is conducted by software MIDAS/GEN. Seismic response of the high-rise structure is analyzed under medium earthquake and rare earthquake , elastic deformation is calculated under conventional earthquake and elastic-plastic deformation is calculated under rare earthquake. The results show that the structure can meet the requirements of no-damage under light earthquake, repairable under medium earthquake and no-collapse under strong earthquake.

2014 ◽  
Vol 8 (1) ◽  
pp. 450-454 ◽  
Author(s):  
Ling Yuhong ◽  
Lin BiaoYi ◽  
Ke Yu ◽  
Chen QingJun

This paper introduced the reconstruction practice and detailing of a high-rise reinforced concrete frame-shear wall structure. To fully utilize the old structure and meet the requirement of the reconstructed structure, certain measures have been put forward. The enlarging of concrete pile cap and adding strip foundation-beam were used to support the new added shear wall. The reconstruction concept detailing of the roof of basement, the enlarging of the beam or column sections and the application of the inclined column are introduced. The whole structure analysis shows that the reconstructed structure is safe enough to meet all the requirement of the designing code and the settlement observation shows that the deformation of the whole structure in gravity is small. The paper shows the design and detailing of the reconstructed engineering is effective and will be valuable to the similar engineering structures.


2013 ◽  
Vol 639-640 ◽  
pp. 957-960
Author(s):  
Li Dong Yu ◽  
Hong Li

The purpose of the this study was to find the influence of local members of high-rise reinforced concrete frame-shear wall structure failed in different position.Referred to the basic requirements against progressive collapse provided by JGJ03-2010,Based on alternate path method ,This paper presents an analysis procedure that made Linear static analysis to a modal of 24-storey frame-shear wall structure designed according to the current code with SAP2000.The results show that once the edge column failed ,the structure will collapse.However,the corner shear wall constitute little threat to the progressive collapse.After the local members failed ,the lower part of the building contribute to the load path and it can results in axial force ruleless in beams,which make against to load bearing if they are tensile forces.The concentrated tensile stress appears around the continuous beam,and it is possible to be broken early after local member failed if close to the failed shear wall.


2011 ◽  
Vol 90-93 ◽  
pp. 3214-3217
Author(s):  
Xiang Chao Yin ◽  
Zhe Sun ◽  
Xue Ling Li

This article mainly studied the seismic response of high-rise RC frame and the damping effect with viscoelastic damper. Taking a reinforced concrete frame structure of 12 layers as the research object, six schemes of damper installed were designed and the dynamic characteristics of these schemes were analyzed. The time history response analysis of 3D Tianjin waves was studied for the six schemes under frequent earthquake. The results show that seismic capacity of the structure could be significantly enhanced with dampers under frequent earthquake. Meanwhile, different damper installations also can make the structures have different damping effect.


2013 ◽  
Vol 40 (5) ◽  
pp. 411-426 ◽  
Author(s):  
Lan Lin ◽  
Nove Naumoski ◽  
Murat Saatcioglu ◽  
Simon Foo ◽  
Edmund Booth ◽  
...  

The selection of seismic motions is one of the most important issues for the time-history analysis of buildings. This paper discusses four different methods for obtaining spectrum-compatible acceleration time histories (i.e., accelerograms) of seismic motions. Based on these methods, four sets of accelerograms compatible with the design spectrum for Vancouver were selected for this study. These included (i) scaled real accelerograms, (ii) modified real accelerograms, (iii) simulated accelerograms, and (iv) artificial accelerograms. The selected sets were used as excitation motions in the nonlinear analysis of three reinforced concrete frame buildings designed for Vancouver. The buildings included a 4-storey, a 10-storey, and a 16-storey building, which can be considered representative of low-rise, medium-rise, and high-rise buildings, respectively. The storey shears, interstorey drifts, and curvature ductilities for beams and columns obtained from the analysis were used for the evaluation of the effects of the selected sets on the responses of the buildings. Based on the results from the analysis, scaled real accelerograms are recommended for use in time-history analysis of reinforced concrete frame buildings.


Author(s):  
Mohammed Mohsin

Abstract: To study seismic demand for regular reinforced concrete frame of flat slab with drop and conventional slab structure by using framed tube structural system by performing time history analysis. The performance of these slabs on 30 storey building will be studied for the analysis, seismic zone (v) will be considered. It is a type of linear dynamic analysis, in which the strength of the structure is tested within the elastic limit of the structure. In this project, high rise building of 30 of area 1296sq.m along with framed tube subjected to earthquake loading are analysed by time history analysis using ETABS software. The dynamic parameters such as base shear, story displacements, and story drift and time period of flat slab building with framed tube is being studied and compared to conventional slab. Keywords: High-rise building, Framed tube, Time history analysis


2013 ◽  
Vol 351-352 ◽  
pp. 1527-1531
Author(s):  
Hong Nan Wang ◽  
Hua Bo Liu ◽  
Jian Feng Wang

The old prefabricated reinforced concrete buildings have been designed with old standards that are lower than the present design code provisions. These buildings are likely to be vulnerable to severe damage or total collapse under strong seismic excitations. Hence, it is necessary to evaluate these buildings seismic performance and to retrofit them using appropriate methods. Buckling-restrained brace (BRB) is a kind of prospective energy dissipation component. As a brace, it is also a lateral force resistant member. Based on the characteristics of prefabricated frame and BRB, the time history analysis of a prefabricated frame strengthening by BRB is carried out by using software ANSYS to input the seismic wave. Then, the seismic behavior of this kind of frame is studied. It is observed that the seismic response of the retrofitted structures reduces significantly in comparison with the corresponding original structure without any retrofit measures.


2011 ◽  
Vol 255-260 ◽  
pp. 2426-2433
Author(s):  
Hui Zhi Zhang ◽  
Xiu Qin Cui

For more reasonable and convenient evaluating structure seismic performance,static elasto-plastic analysis of reinforced concrete frame is presented by pushover with different lateral load distributing modes including uniform distribution, inverted triangle distribution and self-adaption distribution adopted, custom plastic hinge, bending moment-curvity relation and bending moment-axial force correlation of each member section are acquired by Response2000, and time history analysis is used to reinforced concrete frame. It is revealed that the presented method is easy and feasiable, and can generatee stable result.


Sign in / Sign up

Export Citation Format

Share Document