The Effects of Composition and Sintering Conditions on Zirconia Toughened Alumina (ZTA) Nanocomposites

2010 ◽  
Vol 93-94 ◽  
pp. 695-698 ◽  
Author(s):  
H. Esfahani ◽  
Ali Nemati ◽  
E. Salahi

Zirconia Toughened Alumina (ZTA) Nanocomposites were prepared using Nano sized Zirconia (ZrO2) powders doped with 3% mol of yttria (Y2O3) nanopowders. Diffusion of α-alumina (Al2O3) nanoparticles as well as yttria into the Zirconia lattice network drives monoclinic – tetragonal martensitic transformation. Zirconia toughened alumina (ZTA) composites containing different amount of partially stabilized Zirconia (PSZ) 5, 10, 15 and 20% mol, were prepared via wet mixing and axial pressing. After sintering at different temperatures,1450, 1550 and 1650 °C, phase change in the samples were monitored. X-ray diffraction patterns showed that at constant composition, tetragonal zirconia was increased by temperature increasing due to intensification of diffuse coefficient of alumina and yttria in the system. At constant temperature, remained monoclinic zirconia was increased with Zirconia content increasing.

2011 ◽  
Vol 493-494 ◽  
pp. 535-538
Author(s):  
O. Anzabi ◽  
M.M. Aydin ◽  
L.S. Ozyegin ◽  
F.N. Oktar ◽  
Kārlis A. Gross ◽  
...  

Splitting problems at HA-coated implants are generally due to biological reasons. Bond-coatings were used to prevent the splitting problem of zirconia ceramics; this method can be widely seen in industrial applications. Two main groups were used; the first group consisted of spraying a bond layer of titania onto commercially pure titanium. This followed by a spray of HA with 5, 10 and 15 % zirconia (8 % yttria doped) as main layer onto the first bond-coating. For the second group, the samples were coated without bond-coating. Firstly, X-ray diffraction patterns of the starting powders were taken. Then x-ray diffraction patterns of the plasma sprayed samples were taken. In literature, it was seen that 20 % zirconia was sufficient for the transformation into a monoclinic structure for the bond-coated samples. For this study it was found that 10 % zirconia was sufficient to transform to the same structure of the desired crystalline phase transformation. The coating kept its crystal structure and relatively small amount of amorphous transformation was detected. A similar structure was produced using less zirconia. It was thought that the use of titanium-oxide bond-coating layer would play an important role as a third variable in the results. To further investigate these phenomena, more detailed researches must be conducted with using titanium-oxide yittria stabilized zirconia (8 wt %) hydroxyapatite bond-coatings with HA main coatings.


2021 ◽  
Author(s):  
A.R. Makhdoom ◽  
Qasim Ali Ranjha ◽  
Ubaid-ur-Rehman Ghori ◽  
Muhammad Ahsan Raza ◽  
Binish Raza ◽  
...  

Abstract M-type hexaferrites has attracted researchers due to their ordinary magnetic properties and utilization as media for magnetic recording and microwave devices. In this study we have synthesized Ba0.5Sr0.5Fe9Ce1Al2O19 via conventional ceramic route. The synthesized material is treated against different temperatures and investigated structurally and magnetically by using several techniques such as X-ray diffraction, Scanning electron microscopy, and VSM respectively. Morphology of samples confirms the absence of secondary phases and uniform distribution of particles. X-ray diffraction patterns confirms the formation of pure phase of Hexaferrites. Microstructural analyses show the decrease in porosity and dislocations among sintered samples. Magnetic properties for the samples show a decrease in Ms and Mr with increasing temperature from 1225 °C to 1310 °C, while coercivity shows an increase with increasing temperature and maximum coercivity is observed at 1290 °C. The trends and occurrences can be well-linked to the structural variations and sintering effects. The results suggest that material can be used in various magnetic applications such as Recording media, and memory devices.


2013 ◽  
Vol 46 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Bertalan Jóni ◽  
Talal Al-Samman ◽  
Sandip Ghosh Chowdhury ◽  
Gábor Csiszár ◽  
Tamás Ungár

Tension experiments were carried out at room temperature, 473 K and 673 K on AZ31-type extruded magnesium alloy samples. The tensile deformation has almost no effect on the typical extrusion texture at any of the investigated temperatures. X-ray diffraction patterns provided by a high-angular-resolution diffractometer were analyzed for the dislocation density and slip activity after deformation to fracture. The diffraction peaks were sorted into two groups corresponding either to the major or to the random texture components in the specimen. The two groups of reflections were evaluated simultaneously as if the two texture components were two different phases. The dislocation densities in the major texture components are found to be always larger than those in the randomly oriented grain populations. The overwhelming fraction of dislocations prevailing in the samples is found to be of 〈a〉 type, with a smaller fraction of 〈c + a〉-type dislocations. The fraction of 〈c〉-type dislocations is always obtained to be zero within experimental error.


2018 ◽  
Vol 53 (2) ◽  
pp. 111-116 ◽  
Author(s):  
N Sultana ◽  
K Bilkis ◽  
R Azad ◽  
MR Qadir ◽  
MA Gafur ◽  
...  

In this study, yttria stabilized tetragonal zirconia (YSTZ) ceramics were prepared and were sintered at different temperatures to find out the optimum sintering temperature for their better tetragonality and mechanical properties for their application as optical ferrule. Vicker’s hardness was performed by micro hardness tester and it was found to increase with the increase of sintering temperature to a maximum value, then it was decreased with higher sintering temperature. Water absorptivity and porosity were also seen to decrease as the densities of the specimens were increased. X-ray diffraction was employed to determine crystal structure of sintered samples. Surface morphology of the sintered samples was examined through field emission scanning electron microscope.Bangladesh J. Sci. Ind. Res.53(2), 111-116, 2018


1996 ◽  
Vol 52 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Th. Proffen ◽  
R. B. Neder ◽  
F. Frey

The defect structure of calcium-stabilized zirconia (CSZ) is described in terms of a correlated distribution of microdomains within the cubic matrix of CSZ. The defect structure consists of two types of defects: microdomains based on a single oxygen vacancy with relaxed neighbouring ions and microdomains based on a pair of oxygen vacancies separated by 3 1/2/2a along <111>. The combined evaluation of neutron and X-ray data shows that the previously published structure of the single vacancy domain has to be modified: All cations next to the oxygen vacancy are most likely zirconium. This modified model leads to good agreement between observed and calculated neutron and X-ray diffraction patterns.


2012 ◽  
Vol 620 ◽  
pp. 252-256 ◽  
Author(s):  
Nik Akmar Rejab ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The effect of CeO2addition in zirconia toughened alumina (ZTA) was examined. The CeO2addition in weight percent (wt %) was varied from 0 wt% to 15 wt%. The fabricated samples were sintered at a temperature of 1600°C. The sintered samples were characterized their properties such as fracture toughness and phase determination. X-ray diffraction patterns confirm the constituent phases present in the samples were alumina and zirconia. Fracture toughness for each sample in the range of 5.878.38 MPam1/2respectively. It was observed that the addition of ceria increased the fracture toughness of the zirconia toughened alumina ceramic composites.


2015 ◽  
Vol 1112 ◽  
pp. 27-31
Author(s):  
Toto Sudiro ◽  
Didik Aryanto ◽  
Nenen Rusnaeni Djauhari ◽  
Citra Wara Br Sinuraya ◽  
Syahrul Humaidi ◽  
...  

A spark plasma sintering technique was used to consolidate NdFeB compacts at four different temperatures as 750°C, 850°C, 950°C and 1030°C. The surface of specimens was polished to remove the carbon paper on the surface of NdFeB compacts by using SiC paper for up to #1500 in grit. The polished NdFeB compacts were then magnetized by using impulse magnetizer K-series. In this study, the effects of temperature on the structure and magnetic properties of NdFeB magnet were studied. The results show that depending on the fabrication temperature, the X-ray diffraction patterns of NdFeB compacts are distinct. This suggests that the structure of NdFeB compacts is changed with increase in fabrication temperature. Meanwhile, the remanance Br and energy product BH(max) of NdFeB magnets tend to decrease as fabrication temperature increase.


2013 ◽  
Vol 46 (2) ◽  
pp. 550-553 ◽  
Author(s):  
Z.A. Jones ◽  
P. Sarin ◽  
R. P. Haggerty ◽  
W. M. Kriven

The coefficient of thermal expansion analysis suite (CTEAS) has been developed to calculate and visualize thermal expansion properties of crystalline materials in three dimensions. The software can be used to determine the independent terms of the second-rank thermal expansion tensor usinghklvalues, correspondingdhkllistings and lattice constants obtained from powder X-ray diffraction patterns collected at different temperatures. UsingCTEAS, a researcher can also visualize the anisotropy of this essential material property in three dimensions. In-depth understanding of the thermal expansion of crystalline materials can be a useful tool in understanding the dependence of the thermal properties of materials on temperature when correlated with the crystal structure.


1996 ◽  
Vol 454 ◽  
Author(s):  
L. E. Depero ◽  
L. Sangaletti ◽  
E. Bontempi ◽  
R. Salari ◽  
C. Casale ◽  
...  

ABSTRACTMicroraman and scanning electron microscopy studies have been performed on pure TiO2 and Nb-Ti-O nanopowders obtained by laser induced synthesis. The effect of Nb content on the temperature of the anatase to rutile phase transformation, induced by annealing in air at different temperatures, has been evidenced and related to the changes in the particle size distributions obtained from a Fourier analysis of the X-ray diffraction patterns.


2015 ◽  
Vol 1087 ◽  
pp. 321-328 ◽  
Author(s):  
Fatin Afifah Ahmad Kuthi ◽  
Khairiah Haji Badri ◽  
Azlin Mohmad Azman

Crystallinity of oil palm fiber from empty fruit bunch (EFB) with and without tretaments was studied by analyzing the X-ray diffraction (XRD) pattern. In this paper, we focused on the effect of acid hydrolysis onto EFB on the crystallinity of the extracted cellulose. The reaction was carried out by soaking EFB in 1% (v/v) aqueous sulfuric acid (H2SO4) at different temperatures of 120, 130 and 140°C for 1 h. The XRD patterns significantly showed changes in the 2θ peaks before and after the treatment. These changes were described in term of polymorphs type present, reflection and allomorphs of the samples. XRD peak high and XRD deconvolution methods were used to calculate and compare the percentage of crystallinity of untreated EFB (UT-EFB) and acid hydrolyzed samples (AH-EFB). Based on the calculation, increment of about 1.3 times and 1.5 times were achieved by using WAXS and XRD deconvolution methods respectively. This is due to the removal of amorphous part contributed by lignin, hemicellulose and cellulose. Fourier Transform infrared (FTIR) spectra showed the presence of similar peaks in AH-EFB and commercial microcrystalline cellulose (C-MCC) at 1427, 1315, 895 and 1022 cm-1. The micrographic features showed the acid hydrolysis had successfully took place and separated the EFB microfibrils bundles.


Sign in / Sign up

Export Citation Format

Share Document