CTEAS: a graphical-user-interface-based program to determine thermal expansion from high-temperature X-ray diffraction

2013 ◽  
Vol 46 (2) ◽  
pp. 550-553 ◽  
Author(s):  
Z.A. Jones ◽  
P. Sarin ◽  
R. P. Haggerty ◽  
W. M. Kriven

The coefficient of thermal expansion analysis suite (CTEAS) has been developed to calculate and visualize thermal expansion properties of crystalline materials in three dimensions. The software can be used to determine the independent terms of the second-rank thermal expansion tensor usinghklvalues, correspondingdhkllistings and lattice constants obtained from powder X-ray diffraction patterns collected at different temperatures. UsingCTEAS, a researcher can also visualize the anisotropy of this essential material property in three dimensions. In-depth understanding of the thermal expansion of crystalline materials can be a useful tool in understanding the dependence of the thermal properties of materials on temperature when correlated with the crystal structure.

1995 ◽  
Vol 10 (5) ◽  
pp. 1301-1306 ◽  
Author(s):  
V.V.S.S. Sai Sunder ◽  
A. Halliyal ◽  
A.M. Umarji

Compositions in the (Pb1−xBix (Ti1−xFex)O3 solid solution system for x ⋚ 0.7 show unusually large tetragonal distortion. High-temperature x-ray diffraction was used to study the tetragonal distortion as a function of temperature (25–700 °C) for compositions (x = 0–0.7) using powders prepared by solid-state reaction in the above system. Large changes in the lattice parameters were observed over a narrow temperature range near Curie temperature (TC) for compositions near the morphotropic phase boundary (MPB) (x ≃ 0.7). Compositions near MPB showed a c/a ratio of 1.18 at room temperature. Polar plots of lattice constants at different temperatures indicated strong anisotropic thermal expansion with zero thermal expansion along the [201] direction.


1989 ◽  
Vol 33 ◽  
pp. 389-396 ◽  
Author(s):  
Y. Yoshioka ◽  
T. Shinkai ◽  
S. Ohya

The development of linear position-sensitive detectors (PSD) has resulted in a large reduction of data acquisition times in the field of x-ray stress analysis. However, we also require two-dimensional (2-D) diffraction patterns for material evaluation. Especially, the microbeam x-ray diffraction technique gives valuable information on the structure of crystalline materials and this technique has been applied to fracture analysis by x-rays. Many kinds of 2-D PSD have been developed that have insufficient spatial resolution. So x-ray film has still been used as a 2-D detector, but it requires relatively long exposure times and then the process after exposure is very troublesome.


1991 ◽  
Vol 227 ◽  
Author(s):  
C. K Ober ◽  
G. G. Barclay

ABSTRACTNew liquid crystalline thermosets have been prepared from end-functional monomers and oligomers of varying molecular weight. Both triazine and epoxy networks were explored. Of primary interest was the exploitation of the mesophase properties of these networks for developing polymers with high thermal stability and low coefficients of thermal expansion (CTE). Curing was carried out either within the nematic mesophase or the isotropic phase of the prepolymers. Transition temperatures associated with the mesophase were observed to change after curing under these two sets of conditions. The networks with the highest crosslink density were found to exhibit the lowest CTE values. Crosslinking of these thermosets was also carried out in the presence of a 13.5 Tesla magnetic field to determine the effect of orienting fields on the curing of the LC network. Orientation parameters as measured by wide angle x-ray diffraction were as high as 0.6. Values of the coefficient of thermal expansion as low as 15 ppm were achieved in the aligned direction. Of the two resin types, those with the triazine crosslinks had the lowest thermal expansion coefficient. Other thermal properties of these networks will be discussed.


1986 ◽  
Vol 1 (1) ◽  
pp. 2-6 ◽  
Author(s):  
J. D. Hanawalt ◽  
H. W. Rinn

In the course of the past few years, X-ray and spectroscopic methods of analysis have found an increasing usefulness at the Dow Chemical Company. There are a large number of different types of problems on which information can be obtained by the variations of apparatus and technic which are possible in these two fields. It is not the purpose of this paper, however, to discuss these methods or applications in general, but to describe in some detail a scheme of classifying and using X-ray diffraction patterns which has been found very helpful in one particular application of X-rays — namely, that of identifying unknown substances by means of their Hull powder diffraction patterns.The inherent power of X-ray diffraction as a practical means of chemical analysis was pointed out a good many years ago. Having a different theoretical basis and depending upon an entirely different technic than other methods, it would be expected to supplement the information to be obtained from other methods and, at times, to be applicable where other methods are not suitable. It appears, however, that the use of this method has not increased at a rate commensurate with its unique and valuable features, and that it is used by relatively few academic and industrial laboratories.


2007 ◽  
Vol 63 (2) ◽  
pp. 270-276 ◽  
Author(s):  
Thomas Reeswinkel ◽  
Sebastian Prinz ◽  
Karine M. Sparta ◽  
Georg Roth

The new spin ½ V4+ barium oxovanadate BaV4O9 was synthesized and studied by means of single-crystal X-ray diffraction. Its room-temperature structure is monoclinic, space group P2/c. We discuss the temperature evolution of the crystal structure and thermal expansion tensor of the material between 293 and 100 K.


2014 ◽  
Vol 47 (3) ◽  
pp. 819-826 ◽  
Author(s):  
Bastian Brink ◽  
Kenny Ståhl ◽  
Thomas L. Christiansen ◽  
Marcel A. J. Somers

Nitrogen-expanded austenite, γN, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures.In situsynchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability of expanded austenite in the temperature range 385–920 K. Evaluation of the diffractograms of the sample with a high nitrogen content, corresponding to an occupancy of the interstitial lattice of 56%, with Rietveld refinement yielded a best convergence after including the stacking fault probability as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with compositionM4N (M= Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen content and is lowest for the sample with a high level of nitrogen.


1996 ◽  
Vol 449 ◽  
Author(s):  
W. Shan ◽  
R.J. Hauenstein ◽  
A.J. Fischer ◽  
J.J. Song ◽  
W.G. Perry ◽  
...  

ABSTRACTWe present the results of experimental studies of the strain effects on the excitonic transitions in GaN epitaxial layers on sapphire and SiC substrates. Photoluminescence and reflectance spectroscopies were performed to measure the energy positions of exciton transitions and X-ray diffraction measurements were conducted to examine the lattice parameters of GaN epitaxial layers grown on different substrates. Residual strain induced by the mismatch of lattice constants and thermal-expansion between GaN epitaxial layers and substrates was found to have a strong influence in determining the energies of excitonic transitions. The overall effects of the strain generated in GaN is compressive for GaN grown on sapphire and tensile for GaN on SiC substrate. The uniaxial and hydrostatic deformation potentials of wurtzite GaN were derived from the experimental results. Our results yield the uniaxial deformation potentials b1≈−5.3 eV and b2≈2.7 eV, as well as the hydrostatic components a1≈−6.5 eV and a2≈−11.8 eV.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 727
Author(s):  
Peter Staron ◽  
Andreas Stark ◽  
Norbert Schell ◽  
Petra Spoerk-Erdely ◽  
Helmut Clemens

Intermetallic γ-TiAl-based alloys are lightweight materials for high-temperature applications, e.g., in the aerospace and automotive industries. They can replace much heavier Ni-based alloys at operating temperatures up to 750 °C. Advanced variants of this alloy class enable processing routes that include hot forming. These alloys consist of three relevant crystallographic phases (γ-TiAl, α2-Ti3Al, βo-TiAl) that transform into each other at different temperatures. For thermo-mechanical treatments as well as for adjusting alloy properties required under service conditions, the knowledge of the thermal expansion behavior of these phases is important. Therefore, thermal expansion coefficients were determined for the relevant phases in a Ti-Al-Nb-Mo alloy for temperatures up to 1100 °C using high-energy X-ray diffraction.


2021 ◽  
Author(s):  
A.R. Makhdoom ◽  
Qasim Ali Ranjha ◽  
Ubaid-ur-Rehman Ghori ◽  
Muhammad Ahsan Raza ◽  
Binish Raza ◽  
...  

Abstract M-type hexaferrites has attracted researchers due to their ordinary magnetic properties and utilization as media for magnetic recording and microwave devices. In this study we have synthesized Ba0.5Sr0.5Fe9Ce1Al2O19 via conventional ceramic route. The synthesized material is treated against different temperatures and investigated structurally and magnetically by using several techniques such as X-ray diffraction, Scanning electron microscopy, and VSM respectively. Morphology of samples confirms the absence of secondary phases and uniform distribution of particles. X-ray diffraction patterns confirms the formation of pure phase of Hexaferrites. Microstructural analyses show the decrease in porosity and dislocations among sintered samples. Magnetic properties for the samples show a decrease in Ms and Mr with increasing temperature from 1225 °C to 1310 °C, while coercivity shows an increase with increasing temperature and maximum coercivity is observed at 1290 °C. The trends and occurrences can be well-linked to the structural variations and sintering effects. The results suggest that material can be used in various magnetic applications such as Recording media, and memory devices.


Sign in / Sign up

Export Citation Format

Share Document