Research on Finite Element Simulation of the Big Size Spring Steel in Continuous Grooveless Rolling

2014 ◽  
Vol 941-944 ◽  
pp. 1859-1864
Author(s):  
Bao Yuan Wang ◽  
Jiang Bo Dai ◽  
Ye Hua Zhang ◽  
Da Qing Xu

T he basis of the rolling process parameters of large size spring steel for the simulation calculation ,t he fini te element model was establishe . the calculation results reveal the reasons about the billet heap and the l ow precision products , the rolling program file about continuous rolling pass and technology of the rolling mill was revised and perfect ed , the continuity and stability of the large size spring flat steel in continuous slotless roughing rolling is improved greatly, and t he unit operation efficiency increased .

2014 ◽  
Vol 915-916 ◽  
pp. 146-149
Author(s):  
Yong Sheng Wang ◽  
Li Hua Wu

The finite element model of the space KX-Joint was established using ANSYS software, and the failure mode and ultimate bearing capacity of KX-joint were researched. Calculation results show that the surface of chord wall on the roots of compression web members was into the plastic in K plane, and the holding pole without the plastic area and the local buckling failure happened in the surface of chord wall on the roots of Compression Web Members in X plane; The bearing capacity of the joint increased with the Chord diameter, which was appears in the form of power function.


2011 ◽  
Vol 94-96 ◽  
pp. 2080-2083
Author(s):  
Zhi Jian Li ◽  
Jian Kun Zhang

The finite element model of metal structure of 45 tons container stacker is established and Ansys software is employed to calculate the stress of key parts. The skill of model processing of the complete machine and the boundary condition of calculation model is described. The calculation results are used to guide the design of the container stacker.


2021 ◽  
Vol 67 (10) ◽  
pp. 516-524
Author(s):  
Yong Chen ◽  
◽  
Jinjin Tan ◽  
Guoping Xiao

There is great difficulty in controlling the setting load of the large-size slip casing hanger in the Northwest Oilfield in China, and a reasonable setting load is of great significance. This paper studied the relationship between slip hanger bite depth and suspension load in the Ф 273 mm WE-type slip hanger in the Northwest Oilfield in China through experiment, theoretical computation, and finite element analysis. The accuracy of the finite element model was proved by comparing the finite element simulation results with the experimental bite marks on the casing surface. The study results show that the bite mark of the slip insert in the casing is deeper in the lower part of the sitting position. When the hanging load increases from 1000 kN to 6000 kN, the maximum bite depth of the slips in the casing gradually increases with the suspension load. The residual collapse strength of the casing decreases correspondingly. When the residual collapse strength decreases to a certain value, the maximum suspension force corresponding to the bite depth of the slip insert can be obtained. Based on the finite element research results and theoretical equations, the stress distribution on the casing wall where the slips bite the deepest is obtained by derivation. The suggestions on improving the material structure of the casing under this stress were proposed. The limit of the setting load of the large-size casing wellhead for avoiding casing collapse was obtained, which is of great significance for guiding field-casing setting.


2022 ◽  
Vol 355 ◽  
pp. 02055
Author(s):  
Guojing Ye ◽  
Jinsong Zhou ◽  
Bingshao Li

Based on the actual parameters of the capacitor energy storage cabinet on the top of the monorail train, built the cabinet’s finite element model. Then, according to EN 12663-1, set the calibration conditions and fatigue working conditions. Carried out the simulation calculation under different conditions, respectively. The calculation results under the static calibration conditions show that the maximum equivalent stress of each node on the model is smaller than the allowable stress under all working conditions. Therefore, the static strength of the cabinet meets the design requirements. Plotted Goodman fatigue limit diagrams of the cabinet’s base metal and weld and modified them in the Smith form. Then plotted the average stress and stress amplitude under fatigue working conditions in the corresponding scatter diagram. The diagram s show that all points are located within the permitted area. The results show that the fatigue strength of the cabinet meets the requirements of design and use.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


2021 ◽  
Vol 11 (7) ◽  
pp. 3255
Author(s):  
Zheng Wei ◽  
Yusheng Jiang

Surface surcharge changes the existing equilibrium stress field of the stratum and adversely affects the existing tunnel. This paper presents a simplified analytical solution for calculating the longitudinal displacement of existing tunnels that are subjected to adjacent surcharge loading. Based on the Boussinesq solution, the distribution of the additional load matrix caused by the surface surcharge on the existing tunnel was obtained. A Euler–Bernoulli beam with a Pasternak foundation was used as a simplified model for tunnel stress analysis. Using the corrected reaction coefficient of the foundation bed, the differential equation of tunnel deformation was established, and the solution matrix of the longitudinal displacement of the tunnel was obtained by using the finite difference method. The reliability and applicability of the proposed method were verified by comparing the results with finite element simulation results, field test data, and the calculation results of three simplified elastic analysis methods with different foundation bed coefficients. On this basis, the parameters of the load–tunnel model were analyzed, and the effects of the buried depth, the size of the load, the relative positions of the load and the tunnel, and the relative stiffness of the tunnel soil on the maximum displacement of the existing tunnel were calculated. An empirical formula is proposed for calculating the maximum longitudinal displacement of the existing tunnel subjected to surface surcharge. The findings of this research can provide a basis for the theoretical verification of the deformation response of an existing tunnel subjected to adjacent surface surcharge.


2012 ◽  
Vol 430-432 ◽  
pp. 828-833
Author(s):  
Qiu Sheng Ma ◽  
Yi Cai ◽  
Dong Xing Tian

In this paper, based on ANSYS the topology optimization design for high pressure storage tank was studied by the means of the finite element structural analysis and optimization. the finite element model for optimization design was established. The design variables influence factors and rules on the optimization results are summarized. according to the calculation results the optimal design result for tank is determined considering the manufacturing and processing. The calculation results show that the method is effective in optimization design and provide the basis to further design high pressure tank.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


Sign in / Sign up

Export Citation Format

Share Document