Reason Analysis of ANAMMOX Occurred in a Landfill Leachate Treatment System

2014 ◽  
Vol 955-959 ◽  
pp. 2322-2325
Author(s):  
Li Hua Liang ◽  
Su Lin Kuang ◽  
Ting Wang ◽  
Yuan Jing Ji ◽  
Sai Zhang

The biological treatment process of landfill leachate in Beijing Liulitun landfill is a multistage A/O technology, in which a large amount of ANAMMOX (Anaerobic ammonia oxidation, ANAMMOX) bacteria were found in the sludge. There are several factors impacting the activity of ANAMMOX bacteria, including pH value, temperature and HRT which in this process are suitable for the survival of ANAMMOX bacteria. Especially, low dissolved oxygen is an essential factor as the provider of electron donor for nitrite formation. Although the high concentrations of organic matter, ammonia nitrogen and nitrite will inhibit the occurrence of ANAMMOX, ANAMMOX bacteria can self-detoxification by forming a low-poison habitat by consuming ammonia and nitrite as well as organic matter by heterotrophic ANAMMOX bacteria.

2021 ◽  
Vol 233 ◽  
pp. 02006
Author(s):  
Denghua Wu

Landfill leachate has the characteristics of high ammonia nitrogen content, high concentration of organic matter and low carbon nitrogen ratio. Traditional biological treatment technology is difficult to meet the increasingly stringent emission standards. Ammonia nitrogen is the main pollutant in landfill leachate. The ammonia-nitrogen-rich leachate not only poses a threat to the surrounding environment, but also has adverse effects on the subsequent biological treatment of leachate. Anaerobic ammonium oxidation (Anammox) is a new biological denitrification technology, which has the advantages of high denitrification capacity and low energy consumption, and is suitable for the treatment of landfill leachate. This article from the process type, inhibiting factors and microbiology at home and abroad are reviewed in three aspects: the anaerobic ammonia oxidation treatment, the research progress of landfill leachate by analyzing the national environmental protection agency of leachate quality related data in the database, and combining previous research results, reveals the infiltration drain liquid ammonia nitrogen in the different conditions of concentration variation characteristics, for anaerobic ammonia oxidation treatment of landfill leachate to provide the reference for engineering applications.


2013 ◽  
Vol 807-809 ◽  
pp. 1464-1468
Author(s):  
Yi Wang ◽  
La Hua Jin

The experimental study on startup process of half-nitrosofication for high ammonia nitrogen simulated wastewater has been accomplished with a reactor of completely autotrophic nitrogen removal over nitrite (CANON). The startup process and its influences of the concentration of influent , DO and pH were analyzed with the experimental results. The results show that the conversion rate of to is close to 55%, the accumulation rate of is over 95% and the rate of to steadily keeps as 1.02~1.24 under the condition of influent of 400 mg/L, pH of 7.6~8.2, DO of 0.95~1.3mg/L, HRT of 1.5d and water temperature of 17~27°C, which meet the environmental requirements for anaerobic ammonia oxidation bacteria growth, and half-nitrosofication was achieved in the CANON reactor, which create good conditions for further enrichment of anammox bacteria for the operation of the CANON reactor.


Teknik ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 78 ◽  
Author(s):  
Arya Rezagama ◽  
Mochtar Hadiwidodo ◽  
Purwono Purwono ◽  
Nurul Fajri Ramadhani ◽  
Mia Yustika

Air lindi yang meresap ke dalam tanah yang berpotensi bercampur dengan air tanah sehingga menimbulkan pencemaran tanah, air tanah dan air permukaan. Komposisi limbah lindi dari berbagai TPA berbeda-beda bergantung pada musim, jenis limbah, umur TPA. Proses dalam TPA menghasilkan molekul organik recalcitrant yang ditunjukkan dengan rendahnya rasio BOD/COD dan tingginya nilai NH3-N. Belum optimalnya pengolahan air lindi di Jatibarang membutuhkan pretreatment sebagai bentuk upaya alternatif dalam proses pengolahan air lindi sebelum masuk ke dalam proses aerated lagun. Penelitian ini bertujuan untuk menganalisa pengaruh koagulan kimia pada penyisihan bahan organik air lindi TPA Jatibarang. Penelitian dilakukan pada bulan April- Agustus 2016. Karaktersitik air lindi TPA Jatibarang termasuk dalam kategori "moderately stable" dan lindi muda. Penyisihan bahan organik dengan menggunakan kuagulan kimia FeCl3 dan Al2SO4 menunjukkan nilai yang cukup signifikan untuk parameter COD, BOD, TSS. Penggunaan dosis optimal terjadi pada 16 g/L FeCl3 serta 16 g/L Al2SO4 dapat menurunkan nilai COD sebesar 51% dan 65%, BOD sebesar 50% dan 56%, dan TSS sebesar 24% dan 21%. Perubahan nilai pH akibat penambahan koagulan berpengaruh positif terhadap tingkat penyisihan, namun memberikan dampak negatif yaitu buih yang cukup banyak. Penurunan beban organik menguntungkan bagi sistem pengolahan lindi eksisting TPA Jatibarang. [Title: Removal of Lindi Water Organic Waste of TPA Jatibarang using Chemical Coagulation- Floculation] Leachate grounding into the soil that potentially could mix with the groundwater caused contamination of soil, groundwater and surface water. The composition of waste landfill leachate from the various location is depending on the season, the type of waste, and landfill age. Process in the TPA produces recalcitrant organic molecules as indicated by the low ratio of BOD/COD and NH3-N high value. The ineffective treatment of leachate at Jatibarang require a pretreatment as a form of alternative effort in the processing of leachate prior to entry into the aerated lagoon process. This study aims to analyze the influence of chemical coagulants on grounding organic material Jatibarang landfill leachate. The study was conducted in April-August 2016. Jatibarang landfill leachate characteristics were categorized as "moderately stable" and young leachate. Allowance for organic materials using chemical coagulants of FeCl3 and Al2SO4 showed significant values for the parameters of COD, BOD, and TSS. The use of optimal dose occurs at 16 g/L FeCl3 and 16 g/L Al2SO4 which can reduce the COD value by 51% and 65%, BOD by 50% and 56%, and TSS at 24% and 21%. PH value changes due to the addition of coagulant positive effect on the level of the allowance, but a negative effect that is quite a lot of froth. The decline in organic load favorable for existing landfill leachate treatment systems Jatibarang. 


2018 ◽  
Vol 47 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Mehdi Zolfaghari ◽  
Oumar Dia ◽  
Nouha Klai ◽  
Patrick Drogui ◽  
Satinder Kaur Brar ◽  
...  

2021 ◽  
Author(s):  
Nan Jiang ◽  
Li Huang ◽  
Manhong Huang ◽  
Teng Cai ◽  
Jialing Song ◽  
...  

Abstract In this study, thin-film composite with embedded polyester screen, cellulose triacetate with a cast nonwoven and cellulose triacetate with embedded polyester screen (CTA-ES) were examined as the intermediate membranes in osmotic microbial fuel cells (OsMFCs). The reactors were fed with actual landfill leachate and the performance was studied in two operation modes: active layer facing draw solution and active layer facing feed solution (AL-FS). The OsMFC with CTA-ES exhibited the best energy generation (maximum power density: 0.44 W m-2) and pollutant removal efficiency (ammonia nitrogen: 70.12 ± 0.28%, total nitrogen: 74.04 ± 0.33%) in the AL-FS mode, which could be ascribed to the lowest internal resistance (236.75 ohm) and highest microbial richness. Pseudomonas was the highest proportion of microbial in OsMFCs. The results of this study has demonstrated the potential of OsMFCs for landfill leachate treatment.


2006 ◽  
Vol 1 (3) ◽  
Author(s):  
A. Vilar ◽  
S. Gil ◽  
M. A. Aparicio ◽  
C. Kennes ◽  
M. C. Veiga

The optimization of leachate treatment was investigated as well as the configuration of a biological-ozonation process. The leachate used for the experiments was diluted to 1/5 with tap water and treated anaerobically. The anaerobic effluent and the raw leachate were treated with ozone in order to increase their biodegradability getting the minimum organic matter removal. Both were submitted to the ozonation process, applying a constant ozone dose and varying the contact time. The ozonation of raw leachate produced a decrease of COD and BOD5 concentrations as well as BOD5/COD ratios, applying an ozone dose of 38.72 mg/L·min and contact times between 15 and 60 minutes. Ozonation as a pre-treatment process to the biological system did not improve the biodegradability of the raw leachate. The anaerobic effluent from the reactor fed with leachate diluted to 1/5, was subjected to an ozone dose of 34.99 mg/L·min and applying different contact times. BODf values increased from 74.75 up to 1220 mg/L and BODf/COD ratios reached values higher than 1. Then, the application of ozone to the anaerobic effluent led to the improvement of the biodegradability of the leachate as well as the BODf/COD ratio for all the contact times used.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


2014 ◽  
Vol 675-677 ◽  
pp. 633-637
Author(s):  
Ze Ya Wang ◽  
Li Ping Qiu ◽  
Li Xin Zhang ◽  
Jia Bin Wang

A set of bench scale ASBR reactors with 0.5 L effective volume were carried out to culture anaerobic ammonia oxidizing bacteria, while the anaerobic granular sludge was inoculated into these reactors as well as the operating temperature is 30±1°C, HRT is 72h and pH is approximate 7.8 in this experiment. After 60 days running, these reactors appeared anaerobic ammonia oxidation phenomenon. When the influent NH4+-N and NO2--N concentrations were approximately 50 mg/L and 70 mg/L, the NH4+-N, NO2--N and TN removal were 80%, 90% and 70%, respectively, the ratio of the NH4+-N and NO2--N removal and NO3--N production is approximately 1:1.5:0.25, close to the theoretical valve of 1:1.32:0.26 and that mainly accord with the chemical equilibrium of anaerobic ammonia oxidation mode. Furthermore, when the phenomenon of anaerobic ammonia oxidation appeared, effluent pH value was slightly higher than influent and the sludge become red.


2006 ◽  
Vol 6 (6) ◽  
pp. 147-154 ◽  
Author(s):  
K.J. An ◽  
J.W. Tan ◽  
L. Meng

An advanced nitrogen removal pilot study was performed in China's Xia Ping Landfill Leachate Treatment Plant to undertake shortcut nitrification and denitrification with the Membrane Bio-reactor (MBR) process. It was found that the MBR process used 25% less of the oxygen and 40% less of the external carbon sources, compared to the conventional nitrification and denitrification process. The key feature of the MBR process is that it provides an environment more favorable for ammonia oxidation bacterium (AOB) than for nitrite oxidation bacterium (NOB) through controlling loading, pH, temperature, dissolved oxygen concentration (DO), and NH3 inhibition. Optimum operating condition was examined through continuous running of the pilot MBR, and it was found that a minimum HRT of 4.3 days and maximum ammonia loading of 0.6 kg N- NH4+ m3.d with pH 7–8.5, temperature 25–30 °C, and DO at 2 mg/L is favorable to AOB. Kinetic study was conducted to identify the characteristic of the microorganisms in the system. Measured Ks and μA,max of MBR sludge was 19.65 mg NH4-N/L (Temperature 25 °C, pH 8.5) and 0.26 d−1, respectively.


2013 ◽  
Vol 295-298 ◽  
pp. 1472-1477
Author(s):  
Tao Yu ◽  
Tao Huang ◽  
Yin Xi Pan ◽  
Lin Hai Yang

The technology used the coagulation-sedimentation + electro-oxidation joint reactor has been studied to treat landfill leachate. First adding FeCl30.4g/L into all leachate for coagulation and sedimentation, its CODcr elimination rate can achieve 35%, but does have no effect on ammonia nitrogen. Then using electro-oxidation reactor to deal with effluent water, the reaction order of electro-oxidation reactor is first-level, as the reaction conditions are 20mA/cm2 of electric current density, 140min of reaction time, the leachate CODcr elimination rate can reach to above 90%, the ammonia nitrogen elimination rate meets to 98% around. Using coagulation-sedimentation + electro coagulation joint reactor to treat landfill leachate can get stable effluent water quality with good treatment effect, has very high elimination efficiency of CODcr and ammonia nitrogen. It is a suitable treatment technology for landfill leachate.


Sign in / Sign up

Export Citation Format

Share Document