Facile Synthesis of NiO Nanoflowers and their Application in Water Treatment

2014 ◽  
Vol 955-959 ◽  
pp. 30-33
Author(s):  
Ling Liu ◽  
Xiao Jun Zhang ◽  
Jian Zhou Liu

A facile one-step solvothermal route was developed to synthesize NiO nanoflowers (200-300 nm in diameter) with the introduction of poly(vinyl-pyrrolidone)/stearic acid (PVP/SA) mixture. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopes (FESEM), Fourier transform infrared spectrometry (FT-IR), Thermal gravimetric analyze (TGA), and Brunauer-Emmett-Teller (BET). The mesoporous NiO nanoflowers showed an excellent adsorption capacity for organic pollutants (Congo red) from waste water (about 56 mg Congo red per g NiO).

2014 ◽  
Vol 576 ◽  
pp. 21-25
Author(s):  
Ling Liu ◽  
Xiao Jun Zhang ◽  
Jian Zhou Liu ◽  
Rui Yu Wang

The monodisperse Mn2O3 nanooctahedron, Mn3O4 nanorices, NiO nanoflowers and Cu2O nanoroses have been synthesized via a facile solvothermal approach in the presence of poly (vinyl-pyrrolidone)/stearic acid (PVP/SA) as capping agent. Field-emission scanning electron microscopes (FESEM) and X-ray powder diffraction (XRD) were employed to detect the prepared products. Furthermore, the synthetic method appears to be a general approach and other metal oxide materials with various well-defined nano/microstructures can be fabricated by the similar method. The as-obtained metal oxides nanostructures were used as catalyst in CO oxidation, and the octahedral Mn2O3 nanoparticles exhibited relatively high activity. Complete conversion CO to CO2 can be achieved at a temperature as low as 240 °C over Mn2O3 catalyst, which was about 70 and 100 °C lower than that of Mn3O4 and NiO, respectively.


2011 ◽  
Vol 391-392 ◽  
pp. 545-548 ◽  
Author(s):  
Ting Li Cheng ◽  
Min Zheng ◽  
Zuo Shan Wang ◽  
Zhong Li Chen

Zinc ferrite (ZnFe2O4) crystalline was prepared via co-precipitation method, followed by calcinations at various temperatures from 400 to 600 . Poly (vinyl pyrrolidone) (PVP) was used as a stabilizer to prevent the particles from agglomeration. The variation of crystallite size has been investigated using X-ray powder diffraction (XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope(SEM), and a recipe has been developed for the preparation of nano ZnFe2O4with 6.7nm size and complete crystallization.


2010 ◽  
Vol 97-101 ◽  
pp. 3879-3883 ◽  
Author(s):  
Zhi Bo Yang ◽  
Jiu Hua Xu ◽  
Ai Ju Liu

Brazing diamond grits onto steel substrate using a Ni-based filler alloy was carried out via laser beam in an argon atmosphere. The microstructure of the interfacial region among the Diamond grits and the filler layer were investigated by means of scanning electron microscopes (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Meanwhile, the formation mechanism of carbide layers was discussed. All the results indicated that the active element chromium in the Ni-based alloy concentrated preferentially to the surface of the grits to form a chromium-rich layer, and the hard joint between the alloy and the steel substrate is established through a cross-diffusion of iron and Ni-based alloy through parameters optimization.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2018 ◽  
Vol 10 (1) ◽  
pp. 115 ◽  
Author(s):  
Napaphak Jaipakdee ◽  
Thaned Pongjanyakul ◽  
Ekapol Limpongsa

Objective: The objectives of this study were to prepare and characterize a buccal mucoadhesive patch using poly (vinyl alcohol) (PVA), poly (vinyl pyrrolidone) (PVP) as a mucoadhesive matrix, Eudragit S100 as a backing layer, and lidocaine HCl as a model drug.Methods: Lidocaine HCl buccal patches were prepared using double casting technique. Molecular interactions in the polymer matrices were studied using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry. Mechanical and mucoadhesive properties were measured using texture analyzer. In vitro permeation of lidocaine HCl from the patch was conducted using Franz diffusion cell.Results: Both of the free and lidocaine HCl patches were smooth and transparent, with good flexibility and strength. ATR-FTIR, DSC and X-ray diffractometry studies confirmed the interaction of PVA and PVP. Mechanical properties of matrices containing 60% PVP were significantly lower than those containing 20% PVP (*P<0.05). Mucoadhesive properties had a tendency to decrease with the concentration of PVP in the patch. The patch containing 60% PVP had significantly lower muco-adhesiveness than those containing 20% PVP (*P<0.05). In vitro permeation revealed that the pattern of lidocaine HCl permeation started with an initial fast permeation, followed by a slower permeation rate. The initial permeation fluxes follow the zero-order model of which rate was not affected by the PVP concentrations in the PVA/PVP matrix.Conclusion: Mucoadhesive buccal patches fabricated with PVA/PVP were successfully prepared. Incorporation of PVP in PVA/PVP matrix affected the strength of polymeric matrix and mucoadhesive property of patches.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 417 ◽  
Author(s):  
Emese Sipos ◽  
Nóra Kósa ◽  
Adrienn Kazsoki ◽  
Zoltán-István Szabó ◽  
Romána Zelkó

Aceclofenac-loaded poly(vinyl-pyrrolidone)-based nanofiber formulations were prepared by electrospinning to obtain drug-loaded orally disintegrating webs to enhance the solubility and dissolution rate of the poorly soluble anti-inflammatory active that belongs to the BCS Class-II. Triethanolamine-containing ternary composite of aceclofenac-poly(vinyl-pyrrolidone) nanofibers were formulated to exert the synergistic effect on the drug-dissolution improvement. The composition and the electrospinning parameters were changed to select the fibrous sample of optimum fiber characteristics. To determine the morphology of the nanofibers, scanning electron microscopy was used. Fourier transform infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) were applied for the solid-state characterization of the samples, while the drug release profile was followed by the in vitro dissolution test. The nanofibrous formulations had diameters in the range of few hundred nanometers. FT-IR spectra and DSC thermograms indicated the amorphization of aceclofenac, which resulted in a rapid release of the active substance. The characteristics of the selected ternary fiber composition (10 mg/g aceclofenac, 1% w/w triethanolamine, 15% w/w PVPK90) were found to be suitable for obtaining orally dissolving webs of fast dissolution and potential oral absorption.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1026 ◽  
Author(s):  
Abbas Bahrami ◽  
Peyman Taheri

This paper investigates a failure in HP-Mod radiant tubes in a petrochemical plant. Tubes fail after 90,000 h of working at 950 °C. Observed failure is in the form of excessive bulging and longitudinal cracking in reformer tubes. Cracks are also largely branched. The microstructure of service-exposed tubes was evaluated using optical and scanning electron microscopes (SEM). Energy-dispersive X-ray spectroscopy (EDS) was used to analyze and characterize different phases in the microstructure. The results of this study showed that carbides are coarsened at both the inner and the outer surface due to the long exposure to a carburizing environment. Metallography examinations also revealed that there are many creep voids that are nucleated on carbide phases and scattered in between dendrites. Cracks appeared to form as a result of creep void coalescence. Failure is therefore attributed to creep due to a long exposure to a high temperature.


Author(s):  
Youlin Li ◽  
Yu Hu ◽  
Wenqiao You ◽  
Guangming Zhou ◽  
Guilong Peng

Abstract Activated carbon/CuO (AC/CuO) composites was prepared through a facile one-step hydrothermal method and used as a bifunctional material for adsorption and catalysis degradation of bisphenol A (BPA). The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD). The obtained AC/CuO exhibited excellent adsorption and catalytic performance. The maximum adsorption capacity of BPA on the AC/CuO was 319.03 mg/g according to the Langmuir fitting. At an initial BPA concentration of 20 mg/L, the BPA degradation efficiencies were maintained above 96% for 15 min by using 20 mg/L AC/CuO and 2 mM peroxymonosulfate (PMS). Moreover, the relationship between adsorption and catalytic degradation was also investigated. The results indicated that the pre-adsorption disfavored the degradation reaction. This work not only provides a novel preparation method for AC/CuO catalyst, but also gives a deeper insight into the mechanisms between adsorption and catalytic degradation.


2012 ◽  
Vol 268-270 ◽  
pp. 580-583 ◽  
Author(s):  
Yong Tang Jia ◽  
Cui Wu ◽  
Feng Chun Dong ◽  
Gang Huang ◽  
Xian Hua Zeng

The composite nanofiber membranes of poly (ε-caprolactone)/poly(vinyl pyrrolidone) (PCL/PVP) containing silver nanoparticles were prepared by electrospinning method. The morphology of composite nanofibers was characterized by scanning electron microscopy (SEM). The silver nanoparticles on the electrospun fibers were characterized by X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The contact angle and water uptake of PCL/PVP/Ag nanofiber membranes were measured. The SEM photos indicated that the average diameter of the fibers was significantly decreased with the addition of silver nanoparticles. The X-Ray images showed that Ag nanoparticles were distributed on the surface of nanofiber membranes. When the PVP mole ratio was higher than 15%, the nanofiber membranes showed good hydrophilic property. The PCL/PVP/Ag nanofiber membranes could be applied to prepare wound dressing.


2013 ◽  
Vol 4 ◽  
pp. 699-704 ◽  
Author(s):  
Raju Prakash ◽  
Katharina Fanselau ◽  
Shuhua Ren ◽  
Tapan Kumar Mandal ◽  
Christian Kübel ◽  
...  

A carbon-encapsulated Fe3O4 nanocomposite was prepared by a simple one-step pyrolysis of iron pentacarbonyl without using any templates, solvents or surfactants. The structure and morphology of the nanocomposite was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis and Raman spectroscopy. Fe3O4 nanoparticles are dispersed intimately in a carbon framework. The nanocomposite exhibits well constructed core–shell and nanotube structures, with Fe3O4 cores and graphitic shells/tubes. The as-synthesized material could be used directly as anode in a lithium-ion cell and demonstrated a stable capacity, and good cyclic and rate performances.


Sign in / Sign up

Export Citation Format

Share Document