The Influence of Spray Characteristics on Surface Roughness in Minimum Quantity Lubrication Turning

2010 ◽  
Vol 97-101 ◽  
pp. 1906-1909
Author(s):  
Chun Yan Zhang ◽  
Gui Cheng Wang ◽  
Hong Jie Pei ◽  
Chun Gen Shen

In Minimum Quantity Lubrication machining, cutting fluid is provided as mist. Mist with different velocity and diameter may lead to different cooling, lubrication effect and cutting quality. Thus, cutting quality is highly influenced by spray characteristics in MQL machining. In this study, the mathematics model of mist flow was set up first. Then spray characteristics were tested by a 3-Dimensional Particle Dynamic Analyzer. In order to study the influence of spray characteristics on cutting quality, precision turning of 45 steel was performed by a CNC Super Precision Machine Tool. The results indicate that the lowest surface roughness was obtained by supplying more cutting fluid at proper position for spraying distance of 20mm.

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771061 ◽  
Author(s):  
Duc Tran Minh ◽  
Long Tran The ◽  
Ngoc Tran Bao

In this article, an attempt has been made to explore the potential performance of Al2O3 nanoparticle–based cutting fluid in hard milling of hardened 60Si2Mn steel (50-52 HRC) under different minimum quantity lubrication conditions. The comparison of hard milling under minimum quantity lubrication conditions is done between pure cutting fluids and nanofluids (in terms of surface roughness, cutting force, tool wear, and tool life). Hard milling under minimum quantity lubrication conditions with nanofluid Al2O3 of 0.5% volume has shown superior results. The improvement in tool life almost 177%–230% (depending on the type of nanofluid) and the reduction in surface roughness and cutting forces almost 35%–60% have been observed under minimum quantity lubrication with Al2O3 nanofluids due to better tribological behavior as well as cooling and lubricating effects. The most outstanding result is that the uncoated cemented carbide insert can be effectively used in machining high-hardness steels (>50 HRC) while maintaining long tool life and good surface integrity (Ra = 0.08–0.35 µm; Rz = 0.5–2.0 µm, equivalent to finish grinding) rather than using the costlier tools like coated carbide, ceramic, and (P)CBN. Therefore, using hard nanoparticle–reinforced cutting fluid under minimum quantity lubrication conditions in practical manufacturing becomes very promising.


Author(s):  
Shazzad Hossain ◽  
Mohammad Zoynal Abedin

Due to increase in temperature at the cutting zone, the tool wear and surface roughness along with the non-uniform chip formation and the dimensional deviation of the job by using the conventional cutting fluid, the machining operation experts have directed their concentrations in order to achieve a smooth machining operation by using minimum quantity lubrication (MQL). As a consequence, numerous efforts can be seen for not only having the optimum cutting parameters but also other parameters that enhance the product quality and the surface roughness. In this regard, relevant experimental and numerical data outcomes not only MQL but also conventional cutting fluid (CCF) in the turning operation of 50HRC steel has been investigated experimentally. It is revealed that the surface roughness becomes optimal and significantly reduced for the condition of MQL with that of dry and conventional flood lubrication.


Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 125-129
Author(s):  
Dicky Aprilian Nugraha ◽  
Rika Dwi Hidayatul Qoryah ◽  
Mahros Darsin

Sebuah alat kendali semprotan cutting fluid pada minimum quantity lubrication (MQL) telah berhasil dibuat. Alat yang bekerja dengan sistem Arduino ini dihubungkan dengan sensor suhu yang diletakkan pada sisi pahat dan berhasil mengendalikan kapan cutting fluid harus disemprotkan dan kapan harus berhenti. Tujuan dari penelitian ini adalah untuk mempelajari efek penggunaan alat kendali ini terhadap kekasaran permukaan pada pembubutan baja AISI 4340. Metode Taguchi L9 digunakan untuk menyusun desain eksperimen dengan variasi parameter: metode pemberian cutting fluid, kedalaman permukaan dan komposisi campuran cutting fluid. Pahat sisipan berbahan karbida digunakan untuk memesin lurus dan roughness tester digunakan untuk mengukur kekesaran permukaan hasil pembubutan. Analisis S/N ratio dilanjutkan dengan analisis varians (ANAVA) membuktikan bahwa metode MQL yang dilengkapi sistem kendali ini mampu menghasilkan rata-rata permukaan paling halus dibandingkan metode lain. Nilai kekasaran optimum sebesar 1,941 µm diperoleh pada kombinasi permesinan dengan MQL dengan sistem kendali, depth of cut 2,0 mm, dan komposisi air terhadap minyak pada cutting fluid 7:3Effect of Minimum Quantity Lubrication (MQL) Method on Surface RoughnessA device to control the spraying of cutting fluid in minimum quantity lubrication (MQL) has been initiated. This device was programmed with Ardunio and connected to a thermal sensor which is stick on the flank face of the tool. It succeeded in controlling when the cutting fluid should be sprayed and stopped. This research aim is to investigate the effect of using this device to the machined surface roughness. The Taguchi method L9 was used for designing the experiments. Variations were made on the method of applying cutting flood, depth of cut, and cutting fluid composition. Carbide insert tools were used and roughness tester was employed to measure the machined surface roughness. Analysis of S/N ratio following with analysis of variance (ANOVA) revealed that the controlled MQL cooling application results in the minimum surface roughness. The optimum surface roughness would be achieved when using MQL with temperature controller, depth of cut of 2.0 mm, and composition between water and oil for cutting fluid of 7:3.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7207
Author(s):  
Vineet Dubey ◽  
Anuj Kumar Sharma ◽  
Prameet Vats ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin ◽  
...  

The enormous use of cutting fluid in machining leads to an increase in machining costs, along with different health hazards. Cutting fluid can be used efficiently using the MQL (minimum quantity lubrication) method, which aids in improving the machining performance. This paper contains multiple responses, namely, force, surface roughness, and temperature, so there arises a need for a multicriteria optimization technique. Therefore, in this paper, multiobjective optimization based on ratio analysis (MOORA), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and technique for order of preference by similarity to ideal solution (TOPSIS) are used to solve different multiobjective problems, and response surface methodology is also used for optimization and to validate the results obtained by multicriterion decision-making technique (MCDM) techniques. The design of the experiment is based on the Box–Behnken technique, which used four input parameters: feed rate, depth of cut, cutting speed, and nanofluid concentration, respectively. The experiments were performed on AISI 304 steel in turning with minimum quantity lubrication (MQL) and found that the use of hybrid nanofluid (Alumina–Graphene) reduces response parameters by approximately 13% in forces, 31% in surface roughness, and 14% in temperature, as compared to Alumina nanofluid. The response parameters are analyzed using analysis of variance (ANOVA), where the depth of cut and feed rate showed a major impact on response parameters. After using all three MCDM techniques, it was found that, at fixed weight factor with each MCDM technique, a similar process parameter was achieved (velocity of 90 m/min, feed of 0.08 mm/min, depth of cut of 0.6 mm, and nanoparticle concentration of 1.5%, respectively) for optimum response. The above stated multicriterion techniques employed in this work aid decision makers in selecting optimum parameters depending upon the desired targets. Thus, this work is a novel approach to studying the effectiveness of hybrid nanofluids in the machining of AISI 304 steel using MCDM techniques.


2021 ◽  
Vol 23 (04) ◽  
pp. 143-155
Author(s):  
Shrikant U. Gunjal ◽  
◽  
Sudarshan B. Sanap ◽  
Nilesh C. Ghuge ◽  
Satish Chinchanikar ◽  
...  

Cutting fluid is a vital part of the machining process. Cutting fluid is significantly applied tolower the friction and heat generated in the machining zone. It also helps in easy chip removal, protection against oxidation, tool life improvement, and an overall improvement in the quality of the product. The current industrial practices are majorly emphasized on mineral-based oil application under flood lubrication to achieve superior quality. However, these oils and techniques are toxic and environmentally unfriendly. Machining under dry or with minimum quantity lubrication (MQL) has been mostly preferred to eliminate the use of abundant oil. The current research work has established the promising potential for vegetable oils as a cutting fluid under MQL during turning of AISI 4130 steel. The results inferred that vegetable-based cutting fluids performed better over mineral-based cutting fluids in terms of lower values of machined surface roughness, tool wear, cutting forces, and chip-tool interface temperature. The MQL machining performance in terms of cutting forces, surface roughness and tool life has been observed better in comparison to machining under flood and dry cutting conditions.


Author(s):  
Er. Sher Singh

In modern production industries, main focus is on high productivity with best surface finish. For this purpose use of cutting fluid in machining of component plays major role in controlling the surface finish of components. The cutting fluids are generally applied continually during machining i.e. wet or flooded machining. The dry machining yields poor surface finish and less tool life whereas wet machining results in better surface finish as well as longer tool life. But continuous lubrication involves very large amount of consumption of cutting fluids which cause health hazards of machining operator and ill effects on environment. Moreover, continuous lubrication contributes to increase in total production cost of product. Hence, the Minimum Quantity Lubrication(MQL) is needed nowadays which works with less amount of cutting fluid (100-1000ml/hr) with pressurized air (as mist form) as compare wet machining (amount of cutting fluid 400-500L/hr approx.). The study focus on comparison of surface roughness behavior of AL-6061 under different lubrication conditions i.e. Dry, Wet and MQL. The experimental work performed on CNC milling machine involving cutting parameters feed rate, spindle speed and depth of cut as input parameters, where surface roughness and microstructure of specimens were observed as output parameters in the experiment. The machined components under different conditions i.e. DCM (dry cutting machining), MQL (minimum quantity lubrication), WCM (wet cutting machining) were examined for surface roughness using R-10 surface roughness tester whereas microstructure analysis was done using optical microscope. For given cutting parameters at 2000RPM spindle speed, 200mm/min. feed rate and it is found that better result of MQL from the dry machining and nearest of wet machining.


2021 ◽  
Vol 15 (2) ◽  
pp. 8042-8056
Author(s):  
Prashantha Kumar S T ◽  
Thirtha Prasada HP

Duplex stainless steel (DSS)-2205 comes under hard to machine material owing to its inherent properties but more applications in severe working conditions hence, selection of turning process parameters and suitable cutting fluids of DSS-2205 is essential. In the present work, investigate the performance of Deionized water, neat cut oil, and emulsified fluid on cutting temperature and surface roughness during turning of duplex stainless steel-2205 under minimum quantity lubrication technique. Based on a face-centered composite design, 20 experiments were conducted with varying speed, feed, and depth of cut in three levels for three different fluids. Analysis of variance (ANOVA) is used to identify significant parameters that affect the response. Numerical optimization was carried out under Desirability Function Analysis (DFA) for cutting temperature during deionized water cutting fluid for surface roughness during emulsified cutting fluid. Depth of cut is the significant factor for cutting temperature contribution is 74.83% during Deionized water as a fluid, and feed is the significant factor for surface roughness contribution is 93.57% during emulsified fluid. The optimum cutting parameters were determined for speed (50m/min), feed (0.051mm/rev) and depth of cut (0.4mm). Experimental results revealed that Deionized water gives better results for reduced the cutting temperature and emulsified fluid for surface roughness reduction.


2020 ◽  
Vol 13 ◽  
Author(s):  
Gaurav Gaurav ◽  
Abhay Sharma ◽  
G S Dangayach ◽  
M L Meena

Background: Minimum quantity lubrication (MQL) is one of the most promising machining techniques that can yield a reduction in consumption of cutting fluid more than 90 % while ensuring the surface quality and tool life. The significance of the MQL in machining makes it imperative to consolidate and analyse the current direction and status of research in MQL. Objective: This study aims to assess global research publication trends and hot topics in the field of MQL among machining process. The bibliometric and descriptive analysis are the tools that the investigation aims to use for the data analysis of related literature collected from Scopus databases. Methods: Various performance parameters are extracted, such as document types and languages of publication, annual scientific production, total documents, total citations, and citations per article. The top 20 of the most relevant and productive sources, authors, affiliations, countries, word cloud, and word dynamics are assessed. The graphical visualisation of the bibliometric data is presented in terms of bibliographic coupling, citation, and co-citation network. Results: The investigation reveals that the International Journal of Machine Tools and Manufacture (2611 citations, 31 hindex) is the most productive journal that publishes on MQL. The most productive institution is the University of Michigan (32 publications), the most cited country is Germany (1879 citations), and the most productive country in MQL is China (124 publications). The study shows that ‘Cryogenic Machining’, ‘Sustainable Machining’, ‘Sustainability’, ‘Nanofluid’ and ‘Titanium alloy’ are the most recent keywords and indications of the hot topics and future research directions in the MQL field. Conclusion: The analysis finds that MQL is progressing in publications and the emerging with issues that are strongly associated with the research. This study is expected to help the researchers to find the most current research areas through the author’s keywords and future research directions in MQL and thereby expand their research interests.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012100
Author(s):  
M. Khoirul Effendi ◽  
Bobby O. P. Soepangkat ◽  
Rachmadi Noorcahyo ◽  
I Made Londen Batan ◽  
Arif Wahyudi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document