Tool Wear Investigation on Dry Electrostatic Cooling in Turning Titanium Alloy Ti6Al4V

2010 ◽  
Vol 97-101 ◽  
pp. 2058-2061 ◽  
Author(s):  
Hui Wang ◽  
Rong Di Han ◽  
Yang Wang

The machinability of Titanium Alloy Ti6Al4V is poor, the traditional methods to machining is application of cutting fluids with the active additives which cause environmental pollution and health problems. In this paper, the dry electrostatic cooling was applied instead of cutting fluid for the aim of green cutting Ti6Al4V. The ionized device and gas supply system was set up, the effects of dry electrostatic cooling, emulsion oil and dry cutting on tool wear have been examined in turning of Ti6Al4V with carbide tools YG8, the curve between tool flank wear and cutting time was proposed, and the equation between cutting speed and tool life was set up. The results of experiments indicated that application of dry electrostatic cooling reduced the tool wear and increased the tool life. The research results show that clean production was achieved in metal cutting associated with dry electrostatic cooling.

2011 ◽  
Vol 239-242 ◽  
pp. 2011-2014
Author(s):  
Yue Feng Yuan ◽  
Wu Yi Chen ◽  
Wen Ying Zhang

Tool wear experiments in turning titanium alloy Ti6Al4V in the solution-treated and aged condition were carried out; the influence rules of cutting parameters such as cutting speed, feed rate and cutting depth on the tool life were obtained. Experimental formula of tool wear was regressed based on multi-variable linear regression analysis, it could predict tool life under certain conditions.


2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


2016 ◽  
Vol 836-837 ◽  
pp. 20-28
Author(s):  
Li Min Shi ◽  
Cheng Yang ◽  
Qi Jun Li

Titanium alloy Ti6Al4V has poor machinability, which leads to high unit cutting force and cutting temperature, rapid tool failure. In this study, the effect of the cutting speed, feed rate and cooling condition on cutting force and cutting temperature is critically analysed by turning experiment. At the same time, the relationship is established among tool wear, cutting force and cutting temperature. This investigation has shown that cutting speed is the decisive factor which increasing cutting force and cutting temperature. In the process of turning, tool wear results in high amounts of heat and mechanical stress, which leads to serious tool wear. The Minimal Quantity Lubrication reduces the frictional condition at the chip-tool, decreases cutting force and cutting temperature, and delays the tool failure.


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


2011 ◽  
Vol 117-119 ◽  
pp. 1788-1791
Author(s):  
Yue Feng Yuan ◽  
Wu Yi Chen

It is necessary for cutting simulation to determine the friction model at the tool-chip interface suitable for metal cutting process. Cutting force experiments in orthogonal turning titanium alloy TI6AL4V are carried out with cement carbide tool KW10. The Coulomb frictions at the tool-chip interface are calculated based on measured cutting force, and the friction model is regressed, where cutting speed and feed rate are presented.


1961 ◽  
Vol 83 (4) ◽  
pp. 557-568 ◽  
Author(s):  
P. Albrecht

Introduction of the concept of ploughing into the metal-cutting process lead to the abandoning of the assumption of collinearity of the resultant force on tool face and on the shear plane. With this understanding the tool face force is found to produce a bending effect causing bending stresses in the shear zone. Study of the chip formation mechanism when varying cutting speed showed that increased bending action reduces the shear angle and vice versa. A set-up for the development of an analytical model of the chip formation process based on the combined effect of shear and bending stresses in the shear zone has been given. Application of the gained insight to the design of the cutting tool for maximum tool life by controlling of the chip-tool contact was suggested. Brief introduction to the study of cyclic events in chip formation and their relation to the tool life is presented.


2013 ◽  
Vol 770 ◽  
pp. 179-182
Author(s):  
Shu Bao Yang ◽  
Jiu Hua Xu ◽  
Yu Can Fu ◽  
Guo Hui Zhu

Milling tests were undertaken to analyze and compare the machinability of hydrogenated titanium alloy Ti6Al4V. Uncoated WC-Co tool inserts were used in the study. The feed and the depth of milling were maintained constant, and only the milling speed was varied because it is the most affecting parameter. Results showed that cutting force and tool life were greatly influenced by the contents of hydrogen. Tool life decreased at first and then increased gradually with the increase of hydrogen content, and the maximum magnitude decrease of tool life is about 0.2%H, meanwhile, the maximum tool life is about 0.5%H. However, with the increase of cutting speed, the favorable effect of hydrogen on the titanium alloy machinability would be weakened even disappear, therefore, 50-100m/min would be a suitable choice of cutting speed.


2014 ◽  
Vol 800-801 ◽  
pp. 81-86
Author(s):  
Zhen Li ◽  
Er Liang Liu ◽  
Teng Da Wang ◽  
Jiao Li ◽  
Yong Chun Zheng

The various feed rate and cutting speed have an important influence on cutting force, tool wear and chip morphology in machining titanium alloy. Cutting experiments are carried out analyzing the titanium alloy Ti6Al4V under different cutting speed and feed rate, the cutting force values are obtained. The analysis results show that the dominant wear pattern is adhesion wear and chipping. And the tool wear also has an influence on chip morphology.


Author(s):  
Rosemar Batista da Silva ◽  
Álisson Rocha Machado ◽  
Déborah de Oliveira Almeida ◽  
Emmanuel O. Ezugwu

The study of cutting fluid performance in turning is of great importance because its optimization characteristics has associated benefits such as improved tool life and overall quality of machined components as well as reduction in power consumption during machining. However, there are recent concerns with the use of cutting fluids from the environmental and health standpoints. Since environmental legislation has become more rigorous, the option for “green machining” attracts the interest of several manufacturing companies. It is important to consider the cost of machining which is associated with tool wear, depending on the cutting environment. The use of vegetable oil may be an interesting alternative to minimize the health and environmental problems associated with cutting fluids without compromising machining performance. This paper presents a comparative study of mineral and vegetable cutting fluids in terms of tool wear after turning SAE 1050 steel grade with cemented carbide cutting tools. Constant depth of cut of 2mm and variable cutting speed (200 and 350 m/min) and feed rate (0.20 and 0.32 mm/rev) were employed. Test results suggest that is possible to achieve improvement in machinability of the material and increase tool life by using vegetable cutting fluid during machining. Tool life increased by about 85% when machining with vegetable-based fluids compared to mineral-based fluids. Analysis of the worn tools, however, revealed a more uniform wear on the worn flank face when machining with mineral-based fluids.


2014 ◽  
Vol 13 (01) ◽  
pp. 55-72 ◽  
Author(s):  
Vikas Pare ◽  
Geeta Agnihotri ◽  
Chimata Murali Krishna

The life of a tool is very significant in metal cutting because production time is a waste whenever a tool is replaced or reset. Because of prolonged use, cutting tools blunt and their effectiveness decreases over time. It is necessary to replace, index or resharpen, and reset the tool after certain time. Tool life is a measure of the length of time a tool will cut effectively. The life of a cutting tool is mostly affected by many factors, such as, the tool wear, material removal rate, microstructure of the material being cut, setup rigidity, and cutting fluid quality. In this paper, up-milling and down-milling are compared with respect to different input parameters mainly cutting speed, feed, and number of teeth, rake angle, and helix angle. A relationship between tool wear and these input parameters is established by using regression analysis and soft computing techniques are applied to minimize the tool wear. Five selected soft computing techniques viz. (i) Genetic Algorithm (GA), (ii) Simulated Annealing (SA), (iii) Hybrid GA with Pattern Search (PS), (iv) Particle Swarm Optimization (PSO), and (v) Threshold Acceptance Algorithm (TAA), are used for optimization of tool wear. The results obtained from each of them are also analyzed. The effect of input parameters on tool wear, the way it is different for up-milling and down-milling is addressed for each case with the help of five selected soft computing techniques. The results indicate that the tool wear is least in case of down-milling when compared to up-milling and hybrid GA gave the best results.


Sign in / Sign up

Export Citation Format

Share Document