Influence of Perlite Admixture on Pore Structure of Cement Paste

2010 ◽  
Vol 97-101 ◽  
pp. 552-555 ◽  
Author(s):  
Le Hua Yu ◽  
Hui Ou ◽  
S.X. Zhou

The parameters on pore structure of Portland cement pastes blended respectively with 0, 10, 20, 30 and 40% perlite admixture at 3,28,60 curing day were determined by Mercury Intrusion Porosimetre and presented in the paper to investigate affection on performance of cement-based material due to mix the admixture. The research results indicated that since the second hydration reaction had gone on with curing time, perlite admixture could diminish porosity, decrease pore diameter and reduce pore surface area in cement paste. Pores were gradually evolved from original small pores to later smaller pores, moreover fully filled with hydration products and disappeared during hydration reaction. So that the total pore volume in the paste was descended, and the proportion of harmless pores (gel pores and micropores) to whole pores was increased but that of harmful pores (macropores) subtracted. It is concluded that perlite admixture should help to increase the mechanical strength and durability of cement-based materials.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3349
Author(s):  
Jingwei Ying ◽  
Xiangxin Zhang ◽  
Zhijun Jiang ◽  
Yijie Huang

The micro-mechanical properties of hardened cement paste can be obtained by nanoindentation. Phases at different locations can generally be determined by using the Gaussian mixture model (GMM) method and the K-means clustering (KM) method. However, there are differences between analysis methods. In this study, pore structure and porosity of hardened cement paste aged three, seven, and 28 days were obtained by mercury intrusion porosimetry (MIP), and their micro-mechanical properties were obtained by the nanoindentation method. A new method, GMM-MIP and KM-MIP, was proposed to determine the phase of hardened cement paste based on the pore structure and nanoindentation results. The results show that GMM-MIP and KM-MIP methods are more reasonable than GMM and KM methods in determining the phase of hardened cement paste. GMM-MIP can be used to obtain reasonable phase distribution. If the micro-mechanical properties of each phase in hardened cement paste do not satisfy the normal distribution, the GMM method has significant defects.


2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


2005 ◽  
Vol 80 (9) ◽  
pp. 2454-2458 ◽  
Author(s):  
Rudolph A. Olson ◽  
Christopher M. Neubauer ◽  
Hamlin M. Jennings

2013 ◽  
Vol 539 ◽  
pp. 55-59
Author(s):  
Yi Chen ◽  
Wu Yao ◽  
Dan Jin

Mineral additions such as fly ash and silica fume are industrial by products, and play an important role in properties improvement for construction materials. In this work, the shrinkage of cement paste blended with fly ash and silica fume by different substitute ratio was studied. Pore structures of specimens at different ages were determined by mercury intrusion porosimetry (MIP) and shrinkage deformation was measured by standard shrinkage tests. The effects of mineral addtions on shrinkage were discussed. The results show that the fly ash was significantly effective on shrinkage at early ages. Based on the research, several suitable advices were offered to optimize the performances of materials and reduce the shrinkage.


Author(s):  
Yuya Sakai

In this study, literature on pore structure and chloride ion diffusivity was collected to investigate the correlation of pore structure indicators with diffusivity. Good correlation between total porosity and chloride ion diffusivity was found when the samples did not contain admixture materials and diffusion test was conducted without acceleration. Pore diameter indicators did not correlate with diffusivity. The diffusivity of cement paste was reduced by admixture materials compared to that without admixture materials even if the total porosity is the same. On the other hand, the diffusivity of concrete was not reduced by admixture materials.


1986 ◽  
Vol 85 ◽  
Author(s):  
Will Hansen ◽  
Jamal Almudaiheem

ABSTRACTThe pore structure (i.e. surface area, pore size distribution and pore volume) of well-hydrated portland cement pastes of water-cement ratios 0.4, 0.6, and 0.75 were investigated by the nitrogen sorption and mercury intrusion porosimetry (MIP) techniques. The effect of solvent replacement by methanol on the pore structure was studied as well. It was concluded that the solvent replacement drying procedure preserves the original pore structure of hydrated cement because the calculated and measured bulk densities of the different water-cement ratio systems investigated were in excellent agreement. Capillary condensation analysis was used to estimate the volume of capillary pores smaller than 4 nm in pore diameter for the 0.6 and 0.75 water-cement ratio pastes. The 0.4 water-cement ratio paste has pores smaller than can be determined from capillary condensation analysis. The volume of pores smaller than 4 nm was estimated from volume-thickness (V-t) analysis. For the three systems investigated, the volume of pores greater than 4 nm was obtained by MIP. For solvent-replaced pastes that showed capillary condensation according to V-t analysis, excellent agreement was obtained between the nitrogen sorption and MIP techniques in the pore diameter range of 4 nm to 30 nm.


1988 ◽  
Vol 137 ◽  
Author(s):  
Thomas A. Bier ◽  
Darmawan Ludirdja ◽  
J. Francis Young ◽  
Richard L. Berger

AbstractPermeability measurements have been conducted for mortars, concrete and hydrated cement pastes. The permeability with water as the penetrating medium has been measured in a low pressure range (˜ 0.5 psi) and at higher pressures up to 400 psi. Samples never exposed to drying and oven dried samples (105 °C) have been investigated. Pore structure of the investigated samples has been characterized using mercury intrusion porosimetry.The results are discussed with regard to changes in structure during the experiment due to progressing hydration and healing of cracks.


Author(s):  
Yuya Sakai

Correlations between the air permeability coefficient and various pore structure indicators in cementitious materials were examined to determine the pore structure indicator that best evaluated air permeability using data from previous studies of air permeabilities and pore structures. The determination coefficients of air permeability with total pore volume, critical pore diameter, and ordinary threshold pore diameter were low, although these have often been used as indicators. The median and threshold pore diameters obtained by percolation theory showed high determination coefficients. The equation using the threshold pore diameter better estimated the air permeability coefficient than the Katz–Thompson equation.


Sign in / Sign up

Export Citation Format

Share Document