Low-Cost and Fast Production of Nano-Silica from Rice Husk Ash

2014 ◽  
Vol 979 ◽  
pp. 216-219 ◽  
Author(s):  
Weerachon Phoohinkong ◽  
Udomsak Kitthawee

Silica with nanostructure are the high quality silica that are used in many industry areas. The applications of silica nanostructure frequently depend on physical properties such as morphology and size of structure. Rice husk ash is the waste from biomass power plants and is a high quality, raw material as a silica source. The conventional methods for synthesis of nanosilica from rice husk ash are energy consumption or time consumption. The objective of this work was to investigate the synthesized of nanosilica from rice husk ash via sodium silicate solution. nanosilica particles were obtained via alkaline extraction and a fast acid precipitation method at room temperature by adding inorganic salts and without surfactant or template. The flow synthesis was investigated at ambient temperature, varying the concentration of hydrochloric acid, sodium chloride, and flow-rate while fixing the concentration of sodium silicate. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results revealed that the sodium chloride is significantly inorganic salt for generated nanosilica, with uniform spherical morphology (80-150 nm), without curing or aging time. In the flow synthesis method, the silica nanoparticles, of diameter around 10 nm and aggregate particles of around 50 to 200 nm, were obtained. This method may be applicable to control different grade of silica and can easily scaling up of silica production for different industries.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1015-1019
Author(s):  
Ze Xin Yang ◽  
Lin Dong ◽  
Meng Wang ◽  
Huan Li

The main purpose of this article is to develop an environmentally friendly and economically effective process to produce silica from rice husk ash. Sodium silicate solution was prepared by the reaction of rice husk ash and sodium hydroxide solution, and then the sodium silicate solution was used as the raw material for the preparation of silica with sodium bicarbonate. During the reaction, the by-product can be passed into CO2 to prepare sodium bicarbonate what can be reutilized. Experimental route achieved resource recycling and environment-friendly, low energy consumption, zero emissions and so on. Meanwhile the microstructures of the silica powders were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Thermo gravimetric/Differential thermal analyzer (TG-DTA).The purity of silicon was up to 99.43% and the particle size was 200-300nm.


Author(s):  
Kavitha E ◽  
Karthik S ◽  
Eithya B ◽  
Seenirajan M

The quantity of fly ash produced from thermal power plants in India is approximately 80 million tons each year, and its percentage utilization is less than 10%. An attempt has been made to utilize these cheaper materials in concrete production. This thesis aims at investigating the characteristics of fresh concrete and various strengths of hardened concrete made with various mineral admixtures such as fly ash. GGBFS, silica fume. Rice husk ash along with polypropylene fibres in various proportions.  M20 grade concrete is considered for experimental studies with 53grade Ordinary Portland Cement blended with varying percentages of mineral admixtures. The maximum size of coarse aggregate used is 20mm.  Various mineral admixtures such as fly ash. GGBFS.Silica fume. Rice Husk Ash were added concrete in various percentages by partially replacing cement and the optimum percentage of the mineral admixtures will be found.  Based on the obtained values, the admixture with maximum mechanical strength is determined and to this polypropylene fibre is added by varying 0 to 0.5 % by weight of cement to the mix.  The test results obtained were compared and discussed with conventional concrete.


Tibuana ◽  
2020 ◽  
Vol 3 (01) ◽  
pp. 47-52
Author(s):  
Yanatra budi Pramana ◽  
M. Amin Pahlevi ◽  
Zhulianto Ashari ◽  
M. Fariz Effendi ◽  
Fibra Gilang Ramadhan

Utilization of rice husks in Indonesia in general is still very limited. Utilization of silica contained in rice husk ash, which has been used, among others, in the manufacture of sodium silicate. Silica compounds themselves can be used in and manufacturing basic materials for electronic and ceramic equipment, glass, rubber, cosmetic products, and pharmaceuticals. The addition of Mg can increase the silica content (SiO2) in rice husk ash. The best results show an effective Mg ratio of Mg addition to increase silica content is 1: 1. produces the highest amount of silica which is 58.12% of the rice husk ash with a size of 140 mesh


2017 ◽  
Vol 142 ◽  
pp. 3050-3060 ◽  
Author(s):  
E. Kamseu ◽  
L.M. Beleuk à Moungam ◽  
M. Cannio ◽  
Ndigui Billong ◽  
Duangrudee Chaysuwan ◽  
...  

2013 ◽  
Vol 756 ◽  
pp. 266-272
Author(s):  
Denni Asra Awizar ◽  
Norinsan Kamil Othman ◽  
Abdul Razak Daud ◽  
Azman Jalar ◽  
Rabiahtul Zulkafli

Nanosilica powder produced from rice husk ash (RHA) via NaOH treatment has particle size in the range of 10-20 nm as revealed by transmission electron microscopy (TEM). The inhibitive action of nanosilicate from RHA on the corrosion of carbon steel SAE1045 in 0.5M HCl solution was studied using weight loss and potentio dynamic polarization methods. Result shows that the inhibition efficiency was increased with increasing of the inhibitor concentration. Nanosilicate was tremendously effective on carbon steel; exhibiting high inhibition efficiency attained 99%at optimum concentration of 175 ppm. Pitting was not observed on surface of carbon steel when the inhibitor was present. This finding was confirmed from surface morphology by scanning electron microscopy (SEM).


2017 ◽  
Vol 751 ◽  
pp. 461-466 ◽  
Author(s):  
Jaturon Kumchompoo ◽  
Wasinee Wongwai ◽  
Ratchadaporn Puntharod

In this research, sodium silicate (Na2SiO3) was prepared by rice husk ash reacted with 10 M sodium hydroxide. The mixtures were heated by microwave at 400, 600, and 800 watt for 5 and 10 minutes. The formation of sodium silicate was characterized by Fourier transform infrared spectrophotometer. The vibrations of (Na)O–Si–O(Na) and O–Si–O were observed at 595 and 1023-986 cm-1, respectively, except at 800 watt disappeared those vibrations. The results of flame atomic absorption spectrophotometer provided the mole ratio of sodium and silicon was 2:1 as heating the product at 600 watt for 5 and 10 minutes. The phase of sodium silicate was characterized by X-ray diffraction. Sodium silicate could be used as catalyst as in biodiesel production from palm oil. The percentage of yield was 81 by volume.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Wee-Keat Cheah ◽  
Chee-Heong Ooi ◽  
Fei-Yee Yeoh

AbstractThe continuous generation of rice husk biomass makes this waste biomass a consistent and renewable resource for carbon zero power generation. Biochar from the power generation industry could be further utilized and converted into activated carbon through a simple activation process, foregoing the conventional carbonization process. Complete combustion of rice husk into rice husk ash could be subsequently processed into sodium silicate with little difficultly since more than 90%of the rice husk ash constituent is silica. Sodium silicate is used mainly as a precursor for both the synthesis of mesoporous silica and zeolite. This paper reviews on the various nanoporous adsorbents derived from a single rice husk biomass.


Sign in / Sign up

Export Citation Format

Share Document