scholarly journals Intragranular Residual Stress Evaluation Using the Semi-Destructive FIB-DIC Ring-Core Drilling Method

2014 ◽  
Vol 996 ◽  
pp. 8-13 ◽  
Author(s):  
Alexander J.G. Lunt ◽  
Alexander M. Korsunsky

Titanium aluminide (TiAl) is a lightweight intermetallic compound with a range of exceptional mid-to-high temperature mechanical properties. These characteristics have the potential to deliver significant weight savings in aero engine components. However, the relatively low ductility of TiAl requires improved understanding of the relationship between manufacturing processes and residual stresses in order to expand the use of such components in service. Previous studies have suggested that stress determination at high spatial resolution is necessary to achieve better insight. The present paper reports progress beyond the current state-of-the-art towards the identification of the near-surface intragranular residual stress state in cast and ground TiAl at a resolution better than 5μm. The semi-destructive ring-core drilling method using Focused Ion Beam (FIB) and Digital Image Correlation (DIC) was used for in-plane residual stress estimation in ten grains at the sample surface. The nature of the locally observed strain reliefs suggests that tensile residual stresses may have been induced in some grains by the unidirectional grinding process applied to the surface.

2013 ◽  
Vol 768-769 ◽  
pp. 174-181 ◽  
Author(s):  
David von Mirbach

Two commonly used mechanical methods for the determination of residual stresses are the hole-drilling method and the ring-core method, which can be regarded as semi-destructive. The most restricting limitation for the general applicability of both methods, according to the current state of science and technology, is the fact that the scope for relatively low residual stress under 60% of the yield stress is limited.This is a result of the notch effect of the hole or ring core, which leads to a plastification around and on the bottom of the hole and ring shaped groove already at stresses well below the yield stress of the material. The elastic evaluation of the resulting plastic strains leads consequently to an overestimation of the delineated residual stresses. In this paper the influence of elastic-plastic material properties no the specific calibration function for the hole-drilling method using the differential method is studied, and the method of adaptive calibration functions is presented.


2018 ◽  
Vol 53 (6) ◽  
pp. 389-399 ◽  
Author(s):  
Elizabeth Burns ◽  
Joseph Newkirk ◽  
James Castle

Micro-slotting, a relaxation residual stress measurement technique, has recently been shown to be an effective method for measuring local residual stresses in a variety of materials. The micro-slotting method relies on a scanning electron microscope–focused ion beam system for milling and imaging, digital image correlation software to track displacements due to residual stress relaxation after milling, and finite element analysis for displacement–stress correlation and calculation of the original stress state in the imaged region. The high spatial resolution of the micro-slotting method makes it a promising technique for obtaining near-surface residual stress data in Ti-6Al-4V components for input into fatigue life models and crack growth simulations. However, use of the micro-slotting method on this alloy has yet to be evaluated against more established measurement techniques. In this study, spatially resolved sub-surface residual stress measurements were obtained on shot peened and low-stress surface-machined Ti-6Al-4V planar coupons using the micro-slotting method and were compared to measurements obtained using the conventional X-ray diffraction depth profiling technique. The sub-surface measurements were in good agreement for the shot peened sample. Observed differences in the measured near-surface residual stresses on the surface-machined sample were attributed to the larger measurement volume of the X-ray diffraction method, suggesting that the micron-sized measurement volume of the micro-slotting method may be more suitable for capturing shallow stress profiles and steep stress gradients. Prior to performing the micro-slotting measurements, finite element modeled displacements were used to verify the measurement procedure and to address uncertainties in the milled slot geometries. The results of this study demonstrated the validity of the micro-slotting procedure and established the technique as a reliable method for measuring sub-surface residual stresses in Ti-6Al-4V.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Suvi Santa-aho ◽  
Mika Kiviluoma ◽  
Tuomas Jokiaho ◽  
Tejas Gundgire ◽  
Mari Honkanen ◽  
...  

Additive manufacturing (AM) is a relatively new manufacturing method that can produce complex geometries and optimized shapes with less process steps. In addition to distinct microstructural features, residual stresses and their formation are also inherent to AM components. AM components require several post-processing steps before they are ready for use. To change the traditional manufacturing method to AM, comprehensive characterization is needed to verify the suitability of AM components. On very demanding corrosion atmospheres, the question is does AM lower or eliminate the risk of stress corrosion cracking (SCC) compared to welded 316L components? This work concentrates on post-processing and its influence on the microstructure and surface and subsurface residual stresses. The shot peening (SP) post-processing levelled out the residual stress differences, producing compressive residual stresses of more than −400 MPa in the AM samples and the effect exceeded an over 100 µm layer below the surface. Post-processing caused grain refinement and low-angle boundary formation on the sample surface layer and silicon carbide (SiC) residue adhesion, which should be taken into account when using the components. Immersion tests with four-point-bending in the heated 80 °C magnesium chloride solution for SCC showed no difference between AM and reference samples even after a 674 h immersion.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hamid Jahed ◽  
Mohammad Reza Faritus ◽  
Zeinab Jahed

Relieved strains due to drilling hole in a ring sample cut from an autofrettage cylinder are measured. Measured strains are then transformed to residual stresses using calibration constants and mathematical relations of elasticity based on ASTM standard recommendations (American Society for Testing and Materials, ASTM E 837-08, 2008, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” American Society for Testing and Materials). The hydraulic autofrettage is pressurizing a closed-end long cylinder beyond its elastic limits and subsequently removing the pressure. In contrast to three-dimensional stress state in the autofrettage tube, the stress measurement in hole drilling method is performed on a traction free surface formed from cutting the ring sample. The process of cutting the ring sample from a long autofrettaged tube is simulated using finite element method (FEM) and the redistribution of the residual stress due to the cut is discussed. Hence, transformation of the hole drilling measurements on the ring slice to the autofrettage residual stresses is revealed. The residual stresses are also predicted by variable material properties (VMP) method (Jahed, H., and Dubey, R. N., 1997, “An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field,” Trans. ASME J. Pressure Vessel Technol., 119, pp. 264–273) using real loading and unloading behavior of the test material. Prediction results for residual hoop stress agree very well with the measurements. However, radial stress predictions are less than measured values particularly in the middle of the ring. To remove the discrepancy in radial residual stresses, the measured residual hoop stress that shows a self-balanced distribution was taken as the basis for calculating residual radial stresses using field equations of elasticity. The obtained residual stresses were improved a lot and were in good agreement with the VMP solution.


Author(s):  
A. Hizal ◽  
B. Sadasivam ◽  
D. Arola

A preliminary study was conducted to evaluate the parametric dependence of the residual stress distributions in bone that result from an abrasive air-jet surface treatment. Specifically, the influence of particle size and shape used in the treatment on the residual stress, propensity of embedding particles and material removal were studied. Rectangular beams of cortical bone were prepared from bovine femurs and treated with aluminum oxide and glass particles with different treatment angles. Residual stresses within the bone were quantified in terms of the radius of curvature of the bone specimens measured before and after the treatments, as well as a function of time to quantify decay in the stress. The sub-surface distribution was also examined using the layer removal technique. Results showed that the particle size and shape could be used to control the amount of material removal and the magnitude of residual stress within the treated surfaces. An increase in size of the glass particles resulted in an increase in the residual stress and a decrease in material removed during the treatment. The magnitude of residual stress ranged from 22 MPa to nearly 44 MPa through modulation of the particle qualities (size and shape). A microscopic examination of the treated surfaces suggests that the residual stresses resulted primarily from near-surface deformation.


2013 ◽  
Vol 768-769 ◽  
pp. 79-86 ◽  
Author(s):  
Horst Brünnet ◽  
Dirk Bähre ◽  
Theo J. Rickert ◽  
Dominik Dapprich

The incremental hole-drilling method is a well-known mechanical measurement procedure for the analysis of residual stresses. The newly developed PRISM® technology by Stresstech Group measures stress relaxation optically using electronic speckle pattern interferometry (ESPI). In case of autofrettaged components, the large amount of compressive residual stresses and the radius of the pressurized bores can be challenging for the measurement system. This research discusses the applicability of the measurement principle for autofrettaged cylinders made of steel AISI 4140. The residual stresses are measured after AF and after subsequent boring and reaming. The experimental residual stress depth profiles are compared to numerically acquired results from a finite element analysis (FEA) with the software code ABAQUS. Sample preparation will be considered as the parts have to be sectioned in half in order to access the measurement position. Following this, the influence of the boring and reaming operation on the final residual stress distribution as well as the accuracy of the presented measurement setup will be discussed. Finally, the usability of the FEA method in early design stages is discussed in order to predict the final residual stress distribution after AF and a following post-machining operation.


1997 ◽  
Vol 30 (4) ◽  
pp. 449-455 ◽  
Author(s):  
S. Spooner ◽  
X.-L. Wang

Near-surface measurement of residual strain and stress with neutron scattering complements and extends the surface residual stress measurements by X-ray diffraction. However, neutron diffraction measurements near surfaces are sensitive to scattering volume alignment, neutron beam wavelength spread and beam collimation and, unless properly understood, can give large fictitious strains. An analytic calculation and a numerical computation of neutron diffraction peak shifts due to partial burial of the sampling volume have been made and are compared with experimental measurement. Peak shifts in a strain-free nickel sample were determined for conditions where the sample surface is displaced so that the scattering gage volume is partially buried in the sample. The analytic and numerically computed peak shifts take into account the beam collimation, neutron source size, monochromator crystal mosaic spread and the collection of diffracted intensity with a linear position-sensitive counter.


Holzforschung ◽  
2000 ◽  
Vol 54 (2) ◽  
pp. 176-182 ◽  
Author(s):  
Jeroen van Houts ◽  
Debes Bhattacharyya ◽  
Krishnan Jayaraman

Summary Due to the moisture and temperature gradients developed during hot pressing of medium density fibre-board (MDF), residual stresses occur within the board as it equilibrates to room conditions. It would be extremely useful to measure these residual stresses and to determine their effects on board properties such as moduli of elasticity and rupture in bending, internal bond strength and dimensional stability. In this article two methods, namely dissection and hole drilling, have been adapted to measure residual internal stress distributions in six different samples of industry produced MDF. The dissection method involves cutting several pieces of MDF perpendicular to the thickness direction at different depths. The residual stresses released by the dissection can be determined by measuring the curvatures of cut pieces and knowing their elastic moduli. The hole drilling method, on the other hand, involves mounting three strain gauges on the surface of a piece of MDF and drilling a hole to release residual stresses in close proximity. The released stresses are manifested as strains in the forms of which can be measured in three directions on the surface of the board. A theoretical model for predicting residual stresses involving various parameters has been developed and an excellent agreement with the experimental results from both the dissection and hole drilling methods has been achieved. Linear moisture expansion coefficient appears to have the greatest influence on residual stress. When compared against each other, the residual stresses measured by the hole drilling method show some shortcomings towards the centre of the board. While all six of the MDF boards exhibited similar trends in their residual stress distributions, significant differences were identified in the magnitudes of residual stress measured. Finally, some preliminary results linking the residual stress with the thickness swell of the samples and their surface densities have been presented.


2013 ◽  
Vol 486 ◽  
pp. 90-95 ◽  
Author(s):  
František Menda ◽  
František Trebuňa ◽  
Patrik Šarga

There are several measuring techniques for determining residual stress which can be divided according to the created damage in to the construction in non-destructive, semi-destructive and destructive ones. One of the most common is semi-destructive hole-drilling method. This paper deals about Ring-Core method which is based on the similar principles. Today, there is no standard for the Ring-Core method, thus it is important to consider various influential factors. One of them are the dimensions of specimen. Calibration coefficients are determined by finite element (FE) analysis using the commercial software Solidworks. These coefficients are used for residual stress evaluation by incremental method used in Ring-Core method. The influence of different specimen dimensions on the accuracy of the evaluated residual stresses is considered.


Sign in / Sign up

Export Citation Format

Share Document