Micro-slotting technique for reliable measurement of sub-surface residual stress in Ti-6Al-4V

2018 ◽  
Vol 53 (6) ◽  
pp. 389-399 ◽  
Author(s):  
Elizabeth Burns ◽  
Joseph Newkirk ◽  
James Castle

Micro-slotting, a relaxation residual stress measurement technique, has recently been shown to be an effective method for measuring local residual stresses in a variety of materials. The micro-slotting method relies on a scanning electron microscope–focused ion beam system for milling and imaging, digital image correlation software to track displacements due to residual stress relaxation after milling, and finite element analysis for displacement–stress correlation and calculation of the original stress state in the imaged region. The high spatial resolution of the micro-slotting method makes it a promising technique for obtaining near-surface residual stress data in Ti-6Al-4V components for input into fatigue life models and crack growth simulations. However, use of the micro-slotting method on this alloy has yet to be evaluated against more established measurement techniques. In this study, spatially resolved sub-surface residual stress measurements were obtained on shot peened and low-stress surface-machined Ti-6Al-4V planar coupons using the micro-slotting method and were compared to measurements obtained using the conventional X-ray diffraction depth profiling technique. The sub-surface measurements were in good agreement for the shot peened sample. Observed differences in the measured near-surface residual stresses on the surface-machined sample were attributed to the larger measurement volume of the X-ray diffraction method, suggesting that the micron-sized measurement volume of the micro-slotting method may be more suitable for capturing shallow stress profiles and steep stress gradients. Prior to performing the micro-slotting measurements, finite element modeled displacements were used to verify the measurement procedure and to address uncertainties in the milled slot geometries. The results of this study demonstrated the validity of the micro-slotting procedure and established the technique as a reliable method for measuring sub-surface residual stresses in Ti-6Al-4V.

2008 ◽  
Vol 375-376 ◽  
pp. 480-484 ◽  
Author(s):  
Guang Xiu Zhang ◽  
Bin Lin ◽  
Zhen Peng Shi

The generation and distribution of workpiece surface and sub-surface residual stress were predicted through the dynamic finite element simulation of the grinding ceramic process. The base of the simulation is that the thermo elastic-plastic finite element theory and the coupling of grinding forces and temperature were adopted. The results obtained from X-ray diffraction measurement compared well with the values calculated from theory. The correlation between grinding parameters and the ceramic residual stresses was investigated. The research results show that the normal grinding force is the primary factor responsible for the generation of residual stress in grinding ceramic. The mechanical effect of the grains is to affect the magnitude, the depth of penetration and the gradient of the residual stresses.


1996 ◽  
Vol 118 (4) ◽  
pp. 483-489 ◽  
Author(s):  
Y. Ahn ◽  
S. Chandrasekar ◽  
T. N. Farris

Machining produces surface residual stresses which significantly influence the strength and wear resistance of ceramic components. As new methods are developed for machining ceramics, a quick and reliable technique for measurement of residual stresses would be valuable in assessing the viability of these methods from a residual stress perspective. The residual stresses on ground and polished (i.e. machined) surfaces of soda-lime glass, Ni-Zn ferrite, and silicon nitride have been measured using an indentation technique with a Vickers indenter. In this technique, the surface extent of the median/radial cracks produced by the Vickers indenter in machined and in annealed ceramics are measured. These are then combined with a fracture mechanics analysis to estimate the surface residual stresses produced by machining. In order to determine the validity of the indentation technique for estimating machining residual stresses, these stresses were also measured using an X-ray diffraction and a deflection method. The residual stress values determined using the indentation technique in the machined ceramics were found to be reasonably close to those obtained from the X-ray diffraction and deflection methods. Since the indentation technique is relatively simple and easily applied, it offers a promising method for evaluating surface residual stresses in machined ceramics.


2014 ◽  
Vol 996 ◽  
pp. 181-186 ◽  
Author(s):  
Eric Wasniewski ◽  
Baptiste Honnart ◽  
Fabien Lefebvre ◽  
Eric Usmial

Laboratory X-ray diffraction is commonly used for surface residual stresses determination. Nevertheless, the in-depth residual stress gradient also needs to be known. Chemical or electro-polishing method is generally used for material removal. However, material removal may seek a new equilibrium and stress field may change in such a way that experimental residual stress values must be corrected. Different methods exist to account for the residual stress relaxation associated with the material removal operation and will be discussed in this paper.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 566
Author(s):  
Bernd-Arno Behrens ◽  
Jens Gibmeier ◽  
Kai Brunotte ◽  
Hendrik Wester ◽  
Nicola Simon ◽  
...  

Residual stresses resulting from hot-forming processes represent an important aspect of a component’s performance and service life. Considering the whole process chain of hot forming, the integrated heat treatment provided by a defined temperature profile during cooling offers a great potential for the targeted adjustment of the desired residual stress state. Finite element (FE) simulation is a powerful tool for virtual process design aimed at generating a beneficial residual stress profile. The validation of these FE models is typically carried out on the basis of individual surface points, as these are accessible through methods like X-ray diffraction, hole-drilling, or the nanoindentation method. However, especially in bulk forming components, it is important to evaluate the quality of the model based on residual stress data from the volume. For these reasons, in this paper, an FE model which was already validated by near surface X-ray diffraction analyses was used to explain the development of residual stresses in a reference hot forming process for different cooling scenarios. Subsequently, the reference process scenarios were experimentally performed, and the resulting residual stress distributions in the cross-section of the bulk specimens were determined by means of the contour method. These data were used to further validate the numerical simulation of the hot forming process, wherein a good agreement between the contour method and process simulation was observed.


2008 ◽  
Vol 41 (2) ◽  
pp. 377-385 ◽  
Author(s):  
Thomas Erbacher ◽  
Alexander Wanner ◽  
Tilmann Beck ◽  
Otmar Vöhringer

The experimental analysis of near-surface residual stresses by X-ray diffraction methods is based on measuring the spacings of lattice planes while the inclination ψ with respect to the surface plane is changed stepwise. A characteristic feature of conventional techniques is that the penetration depth of the X-rays is altered as inclination is varied. By simultaneously varying three different goniometer angles in a particular fashion, both the penetration depth and the measuring direction can be held constant while ψ is varied. Thus the normal and shear stresses can be derived from the sin2ψ plots by means of standard evaluation procedures developed for gradient-free stress states. The depth profile of residual stress is then obtainedviaLaplace transformation of the results from several stress measurements carried out at different penetration depths. In the present paper, the feasibility of this experimental approach for characterizing the strongly graded, non-equiaxed stress state existing at a machined surface is demonstrated. The results from constant-penetration-depth measurements on the ground surface of an engineering ceramic are compared with those from conventional sin2ψ measurements.


Author(s):  
Gurinder Singh Brar

Welding is a reliable and efficient joining process in which the coalescence of metals is achieved by fusion. Welding is carried out with a very complex thermal cycle which results in irreversible elastic-plastic deformation and residual stresses in and around fusion zone and heat affected zone (HAZ). A residual stress due to welding arises from the differential heating of the plates due to the weld heat source. Residual stresses may be an advantage or disadvantage in structural components depending on their nature and magnitude. The beneficial effect of these compressive stresses have been widely used in industry as these are believed to increase fatigue strength of the component and reduce stress corrosion cracking and brittle fracture. But due to the presence of residual stresses in and around the weld zone the strength and life of the component is also reduced. To understand the behavior of residual stresses, two 10 mm thick Fe410WC mild steel plates are butt welded using the Metal Active Gas (MAG) process. An experimental method (X-ray diffraction) and numerical analysis (finite element analysis) were then carried out to calculate the residual stress values in the welded plates. Three types of V-butt weld joint — two-pass, three-pass and four-pass were considered in this study. In multi-pass welding operation the residual stress pattern developed in the material changes with each weld pass. In X-ray diffraction method, the residual stresses were derived from the elastic strain measurements using a Young’s modulus value of 210 GPa and Poisson’s ratio of 0.3. Finite element method based, SolidWorks software was used to develop coupled thermal-mechanical three dimension finite element model. The finite element model was evaluated for the transient temperatures and residual stresses during welding. Also variations of the physical and mechanical properties of material with the temperature were taken into account. The numerical results for peak transverse residual stresses attained in the welded plates for two-pass, three-pass and four-pass welded joint were 67.7 N/mm2, 58.6 N/mm2, and 48.1 N/mm2 respectively. The peak temperature attained during welding process comes out to be 970°C for two-pass weld, 820.8°C for three-pass weld and 651.9°C for four-pass weld. It can be concluded that due to increase in the number of passes during welding process or deposition weld beads, the residual stresses and temperature distribution decrease. Also, the results obtained by finite element method agree well with those from experimental X-ray diffraction method.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1358
Author(s):  
Jeong-Hun Kim ◽  
Chang-Hyun Baek ◽  
Sang-Kon Lee ◽  
Jong-Hun Kang ◽  
Joon-Hong Park ◽  
...  

Residual stress may influence the mechanical behavior and durability of drawn materials. Thus, this study develops a multiple reduction die (MRD) that can reduce residual stress during the drawing process. The MRD set consists of several die tips, die cases, and lubricating equipment. All the die tips of the MRD were disposed of simultaneously. Finite element analysis of the drawing process was performed according to the reduction ratio of each die tip, and the variables in drawing process with the MRD were optimized using a deep neural network to minimize the residual stress. Experiments on the drawing process with the conventional die and MRD were performed to evaluate the residual stress and verify the effectiveness of the MRD. The results of X-ray diffraction measurements indicated that the axial and hoop residual stresses on the surface were dramatically reduced.


2006 ◽  
Vol 524-525 ◽  
pp. 531-537 ◽  
Author(s):  
A. Tony Fry ◽  
Jerry D. Lord

Hole drilling along with X-Ray diffraction, is one of the most widely used techniques for measuring residual stress, but the conventional approach is limited in the near surface detail that can be resolved. Because of concerns regarding the levels of induced residual stress that might develop during machining and surface treatment processes, there is significant interest in developing a technique that can obtain near surface residual stress information by the application of fine increment hole drilling. Through a cross comparison with X-ray diffraction and neutron diffraction the procedure of fine incremental drilling has been validated, and the advantages of this technique demonstrated.


2013 ◽  
Vol 341-342 ◽  
pp. 179-182
Author(s):  
Wei Xiang Liu

The surface of the nanostructured ceramic coatings after grinding appears cracks, these cracks will reduce components intensity, and the cause of these cracks is grinding surface residual stress. The surface residual stress makes the distance change regularly with crystal orientation and stress changing on the cognate crystal plane of different crystal grain, therefore the X ray diffraction line offset, according to the size of the offseted position, the residual stress can be calculated by using σ = K • M.


2016 ◽  
Vol 879 ◽  
pp. 578-582
Author(s):  
Yi Fei Gao ◽  
Shu Lan Wang

Residual stress measurements were successfully performed on the representative IN718 fatigue specimens by X-Ray Diffraction. All surface residual stresses were found to be compressive. A stress gradient normal to the surface was observed on all specimens. The residual stresses tended to become less compressive with increasing depth into the parts. Residual stress measurement is the special requirement for NADCAP CRITERIA AC 7101/7. In this paper, residual stress measurements were successfully performed on two IN718 low cycle fatigue test specimens.


Sign in / Sign up

Export Citation Format

Share Document