Sintering of EPD Ceramic Coatings by Electron Beam

2006 ◽  
Vol 45 ◽  
pp. 1200-1205
Author(s):  
Maria Federica De Riccardis ◽  
Daniela Carbone ◽  
Emanuela Piscopiello ◽  
Antonella Rizzo ◽  
Marco Vittori Antisari

In order to obtain wear resistant coating as well as thermal barrier on metallic substrates by EPD, the conventional high temperature treatments are inapplicable; so we used an alternative method to densify and make the electrophoretic deposit more adherent. In this work we described a novel method to obtain EPD deposits with good density and adherence to stainless steel substrate. At first, we achieved stabilized alumina and alumina-zirconia based suspensions; to improve the adhesion of ceramic coating on metal, some stainless steel substrates were sandblasted, others were coated with titanium bond layers. Then the substrates were coated by EPD; finally, we used the electron beam to treat the ceramic coating-metallic substrate system on the surface; in this way we obtained adherent and dense EPD coatings. In order to evaluate the quality and the microstructure of the coating sintering, the samples were observed by scanning and transmission electron microscopy; pull tests showed the adhesion of treated EPD coating was about one hundred times higher than that of deposited EPD coating.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 629 ◽  
Author(s):  
Milan Parchovianský ◽  
Ivana Parchovianská ◽  
Peter Švančárek ◽  
Günter Motz ◽  
Dušan Galusek

In this work, the influence of different cleaning procedures on adhesion of composite coatings containing passive ceramic and commercial glasses was investigated. Two compositions (C2c, D2-PP) of double-layer polymer-derived ceramic (PDC) coating systems, composed from bond coat and a top coat, were developed. In order to obtain adherent coatings, stainless steel substrates were cleaned by four different cleaning procedures. The coatings were then deposited onto the steel substrate via spray coating. Pretreatment by subsequent ultrasonic cleaning in acetone, ethanol and deionised water (procedure U) was found to be the most effective, and the resultant C2c and D2-PP coatings, pyrolysed at 850 °C, indicated strong adhesion without delamination or cracks, propagating at the interface steel/bond coat. In the substrate treated by sandblasting and chemical etching, small cracks in the bond coat were observed under the same pyrolysis conditions. After oxidation tests, all coatings, except for those subjected to the U-treated substrates, showed significant cracking in the bond coat. The D2-PP coatings were denser than C2c, indicating better protection of the substrate.


Surfaces ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 237-250 ◽  
Author(s):  
Yusra Ahmed ◽  
Muhammad Yasir ◽  
Muhammad Atiq Ur Rehman

Stainless steel is renowned for its wide use as a biomaterial, but its relatively high corrosion rate in physiological environments restricts many of its clinical applications. To overcome the corrosion resistance of stainless steel bio-implants in physiological environments and to improve its osseointegration behavior, we have developed a unique zein/hydroxyapatite (HA) composite coating on a stainless steel substrate by Electrophoretic Deposition (EPD). The EPD parameters were optimized using the Taguchi Design of experiments (DoE) approach. The EPD parameters, such as the concentration of bio-ceramic particles in the polymer solution, applied voltage and deposition time were optimized on stainless steel substrates by applying a mixed design orthogonal Taguchi array. The coatings were characterized by using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and wettability studies. SEM images and EDX results indicated that the zein/HA coating was successfully deposited onto the stainless steel substrates. The wettability and roughness studies elucidated the mildly hydrophilic nature of the zein/HA coatings, which confirmed the suitability of the developed coatings for biomedical applications. Zein/HA coatings improved the corrosion resistance of bare 316L stainless steel. Moreover, zein/HA coatings showed strong adhesion with the 316L SS substrate for biomedical applications. Zein/HA developed dense HA crystals upon immersion in simulated body fluid, which confirmed the bone binding ability of the coatings. Thus the zein/HA coatings presented in this study have a strong potential to be considered for orthopedic applications.


1990 ◽  
Vol 5 (4) ◽  
pp. 717-720 ◽  
Author(s):  
S. Witanachchi ◽  
S. Patel ◽  
Y. Z. Zhu ◽  
H. S. Kwok ◽  
D. T. Shaw

As-deposited superconducting Y-Ba-Cu-O films have been grown on stainless steel substrates by the plasma assisted laser deposition technique. Low interfacial diffusion of iron at the 550°C growth temperature enables us to produce superconducting films with critical temperatures up to 83 K and critical currents up to ∼4 × 103 A/cm2 (40 K). Dependence of the superconducting properties of the Y-Ba-Cu-O films on the surface condition of the mirror finished stainless steel substrate has been studied. Critical temperature and critical current of the films have been improved by heat-treating the substrate and incorporating buffer layers. Variation of the critical current with the bend radii of the film is discussed.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 963
Author(s):  
Di Pei ◽  
Li Wang ◽  
Ming-hui Ding ◽  
Zhao-nan Hu ◽  
Jun-yu Zhao ◽  
...  

In the paper, by using radio frequency (RF) magnetron sputter technology, the HfC coating grew on a 316L stainless steel substrate in an Ar atmosphere at various substrate bias voltages from 0 to −200 V. From the X-ray diffraction (XRD) and transmission electron microscopy (TEM) experiments, the HfC coatings were well crystallized and (111) preferential growth had been successfully obtained by controlling bias voltage at −200 V. Nanoindentation experimental results for the prepared HfC coatings indicated that they possessed the maximum nanohardness due to the formation of the (111) orientation. The results of electrochemical measurements displayed that 316L stainless steel (316L) coated with the HfC coatings had better corrosion resistance than bare 316L. With the bias voltage increasing to −200 V, adhesion of the 316L substrate with the HfC coating could be greatly improved, as well as corrosion resistance. The antithrombogenicity of the HfC coatings was identified by platelet adhesive and hemolytic ratio assay in vitro. It was shown that the hemocompatibility of coated 316L had been improved greatly compared with bare 316L and the HfC coatings possessed better antithrombogenicity with the bias voltage elevating above −150 V.


2010 ◽  
Vol 17 (03) ◽  
pp. 375-381 ◽  
Author(s):  
ZHIJIA YU ◽  
YUEFEI YU ◽  
YANFENG LI ◽  
SHANPENG SONG ◽  
SUBIN HUO ◽  
...  

Hierarchical alveolate structures in nano- to microscale were fabricated on both aluminum and stainless steel substrates via a chemical etching. On aluminum surfaces, sharp edged caves and plateaus were found. On stainless steel substrate, fine papillae stand on protuberances. These surfaces exhibit super-hydrophobic properties after the fluorination treatment, their water contact angles are 158° and 160°, respectively, with the contact angle hysteresis of about 5°. The roll off angle is about 5°. Ice melting behaviors on a plate of aluminum super-hydrophobic surface were compared with those on a hydrophilic one, their difference shows that the new feature of super-hydrophobic surface could be expected.


2008 ◽  
Vol 373-374 ◽  
pp. 151-154 ◽  
Author(s):  
Li Ji ◽  
Hong Xuan Li ◽  
Fei Zhao ◽  
Jian Min Chen ◽  
Hui Di Zhou

A silicon interlayer was introduced between the DLC films and 202 stainless steel substrate using a medium frequency magnetron sputtering. The adhesion was evaluated by the scratch tests and wear tests together. Two main parameters in the deposition process of Si interlayers, i.e. the sputtering current and pulse bias voltage, were optimized respectively, and the action mechanisms were discussed as well. Moreover, a special treatment with the purpose of forming a complete graded intermixed Si-Fe interface was designed to improve the adhesion strength further. DLC films with good adhesion strength were deposited on 202 stainless steel substrates using a silicon interlayer.


2012 ◽  
Vol 538-541 ◽  
pp. 359-362
Author(s):  
Qing Mei Jia ◽  
Yong Hong Tang ◽  
Ke Nan Meng

The SiO2-ZrO2-Al2O3-Cr2O3 film is coated on the surface of stainless steel using analytical reagent TEOS, ZrOCl2·8H2O, Al(NO3)3·9H2O and Cr(NO3)3·9H2O as precursor and basing on mole ratio to calculate through Sol-gel method. The phase transformation behavior,erosion resistance,thermal shock resistance and abrasion resistance of ceramic coating by different heat treatment are studied. The results show that: 1)The SiO2-ZrO2-Al2O3-Cr2O3 gel coatings has non-crystalline structure after the treatment at 700°C and 800°C. New substance is not created below 700°C 2) The stainless steel substrate with ceramic coating has a higher erosion resistance at high temperature (700°Cand 800°C)than that without coating.3) Thermal shock resistance of the samples treated in 700°C is the best which has reached within 17-21cycles (900°C, air cooling). 4) The stainless steel substrate with ceramic coating has a higher abrasion resistance than that without coating. The samples treated at 700°Cand 800°C have the best abrasion resistance.


Sign in / Sign up

Export Citation Format

Share Document