Rheology of Ceramic Suspensions with Biopolymeric Gelling Additives

2006 ◽  
Vol 45 ◽  
pp. 462-470 ◽  
Author(s):  
Eva Gregorová ◽  
W. Pabst ◽  
Jiri Štĕtina

An overview is given of the rheological behavior of biopolymers in aqueous suspensions and of their role in new ceramic shaping processes (starch consolidation casting and carrageenan gel casting). In particular, we give a state-of-the-art account of the viscometric behavior, measured via rotational viscometry (apparent viscosity, including its shear-rate and concentration dependence), and the viscoelastic properties characterized via oscillatory shear rheometry (storage modulus, loss modulus and phase angle, including their temperature dependence), of starch-water systems, starchcontaining alumina suspensions, carrageenan-water systems and carrageenan-containing zirconia suspensions.

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Meenu Kapoor ◽  
Dhriti Khandal ◽  
Ruchi Gupta ◽  
Pinklesh Arora ◽  
Geetha Seshadri ◽  
...  

Guar gum and its derivatives are highly important industrial hydrocolloids as they find applications in various industrial sectors. Guar is a polymer of high molecular weight and its aqueous solutions exhibit unique rheological properties, which has led to its wide acceptance by the industry. In certain industrial applications low molecular weight guar and its derivatives are needed, and conventionally chemical depolymerisation of guar is carried out for this purpose. Radiation processing is a novel and green technology for carrying out depolymerization and can be an ideal substitute for chemical depolymerisation technique. In order to study the effect of radiation on guar derivatives, three types of derivatives have been taken in the present study: carboxymethyl, hydroxyethyl, and methyl guar. The effect of 1–50 KGy radiation dose on the rheological behavior of these derivatives has been studied, and the results have been described in the present paper. The effect on storage and loss modulus with respect to frequency and effect on viscosity with respect to shear rate have been discussed in detail.


2020 ◽  
Vol 30 (1) ◽  
pp. 130-137
Author(s):  
Hengxiao Yang ◽  
Qimian Mo ◽  
Hengyu Lu ◽  
Shixun Zhang ◽  
Wei Cao ◽  
...  

AbstractTo describe uncured rubber melt flow, a modified Phan–Thien–Tanner (PTT) model was proposed to characterize the rheological behavior and a viscoelastic one-dimensional flow theory was established in terms of incompressible fluid. The corresponding numerical method was constructed to determine the solution. Rotational rheological experiments were conducted to validate the proposed model. The influence of the parameters in the constitutive model was investigated by comparing the calculated and experimental viscosity to determine the most suitable parameters. The uncured rubber viscosity was 3–4 orders larger than that of plastic and did not have a visible Newtonian region. Compared with the Cross-Williams-Landel-Ferry (Cross-WLF) and original PTT models, the modified PTT model can describe the rheological characteristics in the entire shear-rate region if the parameters are set correctly.


2011 ◽  
Vol 233-235 ◽  
pp. 1998-2001 ◽  
Author(s):  
Ming Zhao ◽  
Xiao Zhong Lu ◽  
Kai Gu ◽  
Xiao Min Sun ◽  
Chang Qing Ji

The rheological behavior of PA6/montmorillonite(MMT) by reactive extrusion was investigated using cone-and-plate rheometer. The experimental results indicated that PA6/MMT exhibited shear-thinning behavior. The shear stress of both neat PA6 and PA6/MMT increased with the increase in the shear rate. The reduction of the viscous activation energy with the increase of shear stress reflected PA6/MMT can be processed over a wider temperature.


Author(s):  
Benedict Rothammer ◽  
Max Marian ◽  
Florian Rummel ◽  
Stefan Schroeder ◽  
Maximilian Uhler ◽  
...  

2004 ◽  
Vol 92 (2) ◽  
pp. 1236-1240 ◽  
Author(s):  
P. Grigg ◽  
D. R. Robichaud ◽  
Z. Del Prete

When skin is stretched, stimuli experienced by a cutaneous mechanoreceptor neuron are transmitted to the nerve ending through the skin. In these experiments, we tested the hypothesis that the viscoelastic response of the skin influences the dynamic response of cutaneous rapidly adapting (RA) neurons. Cutaneous RA afferent neurons were recorded in 3 species of mice (Tsk, Pallid, and C57BL6) whose skin has different viscoelastic properties. Isolated samples of skin and nerve were stimulated mechanically with a dynamic stretch stimulus, which followed a pseudo Gaussian waveform with a bandwidth of 0–60 Hz. The mechanical response of the skin was measured as were responses of single RA cutaneous mechanoreceptor neurons. For each neuron, the strength of association between spike responses and the dynamic and static components of stimuli were determined with multiple logistic regression analysis. The viscoelastic material properties of each skin sample were determined indirectly, by creating a nonlinear (Wiener–Volterra) model of the stress–strain relationship, and using the model to predict the complex compliance (i.e., the viscoelastic material properties). The dynamic sensitivity of RA mechanoreceptor neurons in mouse hairy skin was weakly related to the viscoelastic properties of the skin. Loss modulus and phase angle were lower (indicating a decreased viscous component of response) in Tsk and Pallid than in C57BL6 mice. However, RA mechanoreceptor neurons in Tsk and Pallid skin did not differ from those in C57 skin with regard to their sensitivity to the rate of change of stress or to the rate of change of incremental strain energy. They did have a decreased sensitivity to the rate of change of tensile strain. Thus the skin samples with lower dynamic mechanical response contained neurons with a somewhat lower sensitivity to dynamic stimuli.


2022 ◽  
Author(s):  
Richard Carl Gerum ◽  
Elham Mirzahossein ◽  
Mar Eroles ◽  
Jennifer Elsterer ◽  
Astrid Mainka ◽  
...  

Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher-level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 μm wide microfluidic channel. The fluid shear stress induces large, near ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks.


1989 ◽  
Vol 37 (7) ◽  
pp. 1837-1853 ◽  
Author(s):  
Hideroh Takahashi ◽  
Takaaki Matsuoka ◽  
Takashi Ohta ◽  
Kenzo Fukumori ◽  
Toshio Kurauchi ◽  
...  

1998 ◽  
Vol 18 (1-2) ◽  
pp. 1-16
Author(s):  
Taehyung Kim ◽  
Kyoungsei Choi ◽  
Won Ho Jo

Abstract Stochastic dynamics simulations were performed to investigate the viscoelastic properties of polymer blends. In this simulation, three model systems with different intermolecular interactions are used to examine the effect of intermolecular interaction on the viscoelastic properties of polymer blends. Structural information such as the radius of gyration, orientation factor and radial distribution function of polymers is calculated from computer simulations as a function of shear rate and then is related to simulated viscoelastic properties of polymer blends. The effect of intermolecular interaction on the viscosity becomes different depending upon the magnitude of shear rate. At lower shear rate regions, more attractive intermolecular interaction results in lower viscosity due to chain stretching. But, at higher shear rate regions, more attractive interaction results in higher viscosity due to more dense packing of chains induced by the intermolecular attraction.


Sign in / Sign up

Export Citation Format

Share Document