Diffusion of Boron in Silicon and Silicon-Germanium in the Presence of Carbon

2005 ◽  
Vol 237-240 ◽  
pp. 998-1003
Author(s):  
Mudith S.A. Karunaratne ◽  
Janet M. Bonar ◽  
Jing Zhang ◽  
Peter Ashburn ◽  
Arthur F.W. Willoughby

Boron diffusion in Si and strained SiGe with and without C was studied. Using gassource molecular beam epitaxy (MBE), B containing epitaxial layers of: (i) Si, (ii) Si containing 0.1% C, (iii) SiGe with 11% Ge and (iv) SiGe with 11% Ge and with a 0.1% C, were grown on substrates. These samples were then rapid thermal annealed (RTA) at 940, 1000 and 1050°C in an O2 ambient. Self-interstitial-, vacancy- and non-injection conditions were achieved by annealing bare, Si3N4- and Si3N4+SiO2-coated surfaces, respectively. Concentration profiles of B, Ge and C were obtained using Secondary-Ion Mass Spectrometry (SIMS). Diffusion coefficients of B in each type of matrix were extracted by computer simulation. We find that B diffusivity is reduced by both Ge and C. The suppression due to C is much larger. In all materials, a substantial enhancement of B diffusion was observed due to self-interstitial injection compared to non-injection conditions. These results indicate that B diffusion in all four types of layers is mediated primarily by interstitialcy type defects.

2004 ◽  
Vol 810 ◽  
Author(s):  
Lilya Ihaddadene-Lecoq ◽  
Jerome Marcon ◽  
Kaouther Ketata

ABSTRACTWe have investigated and modeled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF2+. Low energy BF2+ 1×1015 cm−2 implantations at 2.0keV were characterized using Secondary Ion Mass Spectrometry (SIMS) in order to measure dopant profiles. RTA was carried out at 950°C, 1000°C, 1050°C and 1100°C during 10s, 20s, 30s and 60s. The results show that concentration profiles for BF2+ implant are shallower than those for a direct B+ ion implantation. This could be attributed to the presence of fluorine which trap interstitial Si so that interstitial silicon supersaturation is low near the surface.


1995 ◽  
Vol 416 ◽  
Author(s):  
T. Sung ◽  
G. Popovici ◽  
M. A. Prelas ◽  
R. G. Wilson

ABSTRACTA study of boron diffusion into diamond lattice was performed. Diffusion was made in hydrogen atmosphere at 30 torr. Two type IIa diamonds were heated at 1200 and 1400 °C for 20 hours and 5 minutes, respectively. Boron powder was used as a dopant source. The boron concentration profiles of both samples were measured by secondary ion mass spectrometry. Based on Fick's law, the diffusion coefficients were computed.


1988 ◽  
Vol 144 ◽  
Author(s):  
J. M. Zavada ◽  
R. G. Wilson ◽  
S. W. Novak ◽  
S. J. Pearton ◽  
A. R. Von Neida

ABSTRACTIn this paper we report on the depth distributions of implanted hydrogen in GaP crystals and the subsequent changes produced by post- implantation furnace annealing. A sulfur doped n+ GaP wafer has been implanted with 333 keV protons to a fluence of 5E15/cm+2. A similar wafer was implanted with 350 keV deuterons to the same fluence. Portions of each wafer have been furnace annealed at temperatures up to 500°C. The implanted hydrogen and the dopant S atoms were then depth profiled using secondary ion mass spectrometry (SIMS). The measurements show that the redistribution of hydrogen begins with annealing at about 300°C and proceeds both towards the surface and deeper into the substrate. The overall behavior is similar to that found previously for hydrogen in GaAs. However, in GaP crystals this redistribution begins at a higher temperature and proceeds more slowly in the implanted region. Based on the SIMS profiles, diffusion coefficients for hydrogen migrating into substrate are obtained.


2006 ◽  
Vol 45 ◽  
pp. 1626-1631
Author(s):  
Marek Boniecki ◽  
Rafał Jakieła ◽  
Zdzislaw Librant ◽  
Wladyslaw Wesolowski ◽  
Danuta Dabrowska ◽  
...  

The superplastic flow in tetragonal zirconia polycrystals stabilised 3mol% Y2O3 (3YTZP) is strongly affected by the dopant cations, which segregate at the grain boundary. It is proposed that this flow is controlled by grain boundary diffusion of Zr4+ ions and therefore the dopant cations should change the grain boundary diffusion. In order to prove this thesis the measurements of grain boundary diffusion coefficients were made using Hf4+ ions as tracer. Zirconia samples were doped with 1mol% of Al2O3, SiO2, MgO, MgAl2O4, GeO2 and TiO2. The tracer was deposited on the surface of the zirconia specimens by placing several drops of hafnium nitrate and then drying at 373 K. In this way, thin films of HfO 2 were obtained. The samples were heated in the range 1553 – 1773 K for 1 to 24 h. The concentration versus depth profiles were measured using secondary ion mass spectrometry (SIMS). Calculated hence grain boundary diffusion coefficients were several times bigger for doped samples than for pure 3Y-TZP samples.


2008 ◽  
Vol 600-603 ◽  
pp. 453-456
Author(s):  
Margareta K. Linnarsson ◽  
J. Isberg ◽  
Adolf Schöner ◽  
Anders Hallén

The boron diffusion in three kinds of group IV semiconductors: silicon, silicon carbide and synthetic diamond has been studied by secondary ion mass spectrometry. Ion implantation of 300 keV, 11B-ions to a dose of 21014 cm-2 has been performed. The samples are subsequently annealed at temperatures ranging from 800 to 1650 °C for 5 minutes up to 8 hours. In silicon and silicon carbide, the boron diffusion is attributed to a transient process and the level of out-diffusion is correlated to intrinsic carrier concentration. No transient, out-diffused, boron tail is revealed in diamond at these temperatures.


1990 ◽  
Vol 57 (17) ◽  
pp. 1799-1801 ◽  
Author(s):  
E. F. Schubert ◽  
H. S. Luftman ◽  
R. F. Kopf ◽  
R. L. Headrick ◽  
J. M. Kuo

2006 ◽  
Vol 13 (02n03) ◽  
pp. 215-220
Author(s):  
F. S. GARD ◽  
J. D. RILEY ◽  
K. PRINCE

Chlorine is one of the most used species to produce n-type ZnSe epilayers. In this paper, we present Secondary Ion Mass Spectrometry (SIMS) profiles of a series of Cl -doped ZnSe samples, which were grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates. These profiles have been used to examine the limitation of SIMS analysis of narrow Cl -delta layers. In order to convert SIMS raw data to quantified data, the depth profile from a Cl -implanted standard sample has been used to estimate the "useful ion yield" of chlorine and thus the instrumental sensitivity for chlorine in a ZnSe matrix. The "useful ion yield" and detection limit of chlorine in the ZnSe host matrix were calculated to be 4.7 × 10-7 and 5 × 1017 atoms/cm3, respectively.


Sign in / Sign up

Export Citation Format

Share Document