Elastic Deformation Effects on the Thermo-Hydrodynamic Aspect of Porous Journal Bearings

2014 ◽  
Vol 353 ◽  
pp. 275-279
Author(s):  
S. Boubendir ◽  
Salah Larbi ◽  
R. Bennacer

In this paper, the effects of porous bush elastic deformation on the static characteristics of finite porous journal bearing are investigated using Darcy’s law. The modified Reynolds equation applied to thermo-hydrodynamic problems is modified by considering the viscosity variation along the film thickness. The film pressure distribution and other characteristics such as the load carrying capacity and attitude angle are obtained by solving the governing equations numerically. Obtained results showed that deformation is considerable in the maximum pressure zone, and the elastic deformation will decrease the load carrying capacity. The viscosity variation parameter tends also to decrease the load carrying capacity.

Author(s):  
Boualem Chetti ◽  
Hamid Zouggar

In this work, a numerical study of the effect of elastic deformation on the static characteristics of a circular journal bearing operating with non-Newtonian fluids obeying to the power law model is presented. The modified Reynolds equation has been derived taking into consideration the effect of non-Newtonian behavior of the fluids. To obtain the pressure distribution, the Reynolds equation has been solved using finite difference technique with appropriate iterative technique incorporating Reynolds boundary conditions. The static performance characteristics for finite-width journal bearing in terms of the load-carrying capacity, the attitude angle, friction coefficient, and the side leakage have been studied for various values of the non-Newtonian power law index n and the elastic coefficient. The results show that the increase of the power law index produces a higher load-carrying capacity, a higher side leakage, a lower attitude angle, and a lower friction coefficient. From this study, it can be concluded that the elastic deformation has an important influence on the static characteristics of the journal bearing lubricated with a non-Newtonian fluid, and this influence is more significant for the journal bearing operating at larger values of the eccentricity ratio.


Author(s):  
Pentyala Srinivasa Rao ◽  
Amit Kumar Rahul

In this study, the effect of viscosity variation of non-Newtonian lubrication on squeeze film characteristics with porous and Rabinowitsch fluid for conical bearings is analyzed. The modified Reynolds equation representing the characteristics of non-Newtonian fluid with viscosity variation on the porous wall followed by the cubic stress law condition is invoked. For lubricant flow in a bearing clearance and in a porous layer Morgan–Cameron approximation is considered. A small perturbation technique is used to compute the pressure generation using modified Reynolds equation of lubrication. Approximate analytical solutions have been obtained for the squeeze film pressure, load-carrying capacity, squeeze film time, and center of pressure. The outcomes are displayed in diagrams and tables, which show that the effect of viscosity variation and porous wall on the squeeze film lubrication of conical bearings decreases film pressure, load-carrying capacity, and response time for the Newtonian case in comparison to the non-Newtonian case.


2017 ◽  
Vol 46 (1) ◽  
pp. 1-8
Author(s):  
Vishwanath B. Awati ◽  
Ashwini Kengangutti ◽  
Mahesh Kumar N.

The paper presents, the multigrid method for the solution of combined effect of surface roughness and viscosity variation on the squeeze film lubrication of a short journal bearing operating with micropolar fluid. The modified Reynolds equation which incorporates the variation of viscosity in micropolar fluid is analysed using Multigrid method. The governing modified Reynolds equation is solved numerically for the fluid film pressure and bearing characteristics viz. load carrying capacity and squeeze time. The analysis of the results predicts that, the viscosity variation factor decreases the load carrying capacity and squeeze film time, resulting into a longer bearing life. The results are compared with the corresponding analytical solutions.


Author(s):  
B. Chetti

This work is an investigation of the performance characteristics of an offset journal bearing lubricated with a fluid with couple stresses taking into consideration the elastic deformation of the liner. The couple stresses might be expected to appear in noticeable magnitudes in liquids containing additives with large molecules. The modified Reynolds equation has been solved using the finite difference method. Load carrying capacity, attitude angle, side leakage and friction coefficients are determined for various values of couple stress parameter of a rigid and deformable bearing. It is found that, the static characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids. It is concluded that, the elastic deformation of the bearing has significant influence on the bearing characteristics.


2015 ◽  
Vol 751 ◽  
pp. 137-142 ◽  
Author(s):  
W. Gunnuang ◽  
C. Aiumpornsin ◽  
Mongkol Mongkolwongrojn

This research work presents the influence of Al2O3 nanoparticle additives on the performance characteristics of a journal bearing. Non-Newtonian fluid based on Carreau viscosity model was represented for SAE10W50 oil blended with Al2O3 nanoparticles in this work. Reynolds equation and energy equation have been formulated and solved numerically using finite difference method and multigrid multilevel techniques with boundary conditions. The static characteristics of the journal bearing under isothermal and adiabatic conditions were examined. The results show that the addition of Al2O3 nanoparticles improve load-carrying capacity of the journal but almost no change on film temperature due to good thermal property of Al2O3 nanoparticles.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
N. B. Naduvinamani ◽  
Archana K. Kadadi

A theoretical study of the effect of the viscosity variation on the squeeze film performance of a short journal bearing operating with micropolar fluid is presented. The modified Reynolds equation accounting for the viscosity variation in micropolar fluid is mathematically derived. To obtain a closed form solution, the short bearing approximation under constant load is considered. The modified Reynolds equation is solved for the fluid film pressure and then the bearing characteristics, such as obtaining the load carrying capacity and the squeeze film time. According to the results evaluated, the micropolar fluid as a lubricant improves the squeeze film characteristics and results in a longer bearing life, whereas the viscosity variation factor decreases the load carrying capacity and squeezes film time. The result is compared with the corresponding Newtonian case.


2014 ◽  
Vol 66 (2) ◽  
pp. 168-173 ◽  
Author(s):  
Boualem Chetti

Purpose – The performance of finite circular journal bearing lubricated with micropolar fluids taking into account the elastic deformation of the bearing liner is presented. The paper aims to discuss these issues. Design/methodology/approach – The modified Reynolds equation is obtained using the micropolar lubrication theory. The solution of the modified Reynolds equation is determined using finite difference technique. The static characteristics in terms of load-carrying capacity, attitude angle, side leakage and friction coefficient for micropolar and Newtonian fluids are determined for various values of eccentricity ratio and different values of elastic coefficient. Findings – Compared with Newtonian fluids, the micropolar fluids produce an increase in the load-carrying capacity and a reduction in the attitude angle, the friction factor and side leakage for both the rigid and deformable bearings. Originality/value – It is concluded that the influence of elastic deformation on the bearing characteristics lubricated with micropolar fluids is significantly apparent compared with bearing lubricated with Newtonian fluids.


2019 ◽  
Vol 71 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Fangrui Lv ◽  
Chunxiao Jiao ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhu-shi Rao

Purpose The purpose of this paper is to analyze the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves. Design/methodology/approach A lubrication model considering journal misalignment, bush deformation and grooves is established. In dynamic analyses of shaft systems, bearings are usually simplified as supporting points. Thus, an approach for solving the equivalent supporting point location is presented. The influence of misalignment angle and groove number on film thickness, hydrodynamic pressure distribution, load-carrying capacity and ESP location is investigated. Findings As the misalignment angle increases, the location of the maximum pressure and ESP are shifted toward the down-warping end, and the load-carrying capacity of the bearing decreases. In comparison to the nine-groove bearing, the six grooves bearing has a higher load-carrying capacity and the ESP is located closer to the down-warping end for an equivalent misalignment angle. Practical implications The results of this study can be applied to marine propeller shaft systems and other systems with misaligned bearings. Originality/value A study on the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves is of significant interest to the research community.


2005 ◽  
Vol 128 (2) ◽  
pp. 345-350 ◽  
Author(s):  
Y. Feldman ◽  
Y. Kligerman ◽  
I. Etsion ◽  
S. Haber

Microdimples generated by laser surface texturing (LST) can be used to enhance performance in hydrostatic gas-lubricated tribological components with parallel surfaces. The pressure distribution and load carrying capacity for a single three-dimensional dimple, representing the LST, were obtained via two different methods of analysis: a numerical solution of the exact full Navier-Stokes equations, and an approximate solution of the much simpler Reynolds equation. Comparison between the two solution methods illustrates that, despite potential large differences in local pressures, the differences in load carrying capacity, for realistic geometrical and physical parameters, are small. Even at large clearances of 5% of the dimple diameter and pressure ratios of 2.5 the error in the load carrying capacity is only about 15%. Thus, for a wide range of practical clearances and pressures, the simpler, approximate Reynolds equation can safely be applied to yield reasonable predictions for the load carrying capacity of dimpled surfaces.


Author(s):  
Ravindra Mallya ◽  
Satish B Shenoy ◽  
Raghuvir Pai

The static characteristics of misaligned three-axial water-lubricated journal bearing in the turbulent regime are analyzed for groove angles 36° and 18°. Ng and Pan’s turbulence model is applied to study the turbulence effects in the journal bearing. The static parameters such as load-carrying capacity, friction coefficient, and side leakage are found for different degree of misalignment (DM). The change in flow regime of the lubricant from laminar to turbulent and the increase in misalignment, improved the load capacity of the bearing. For lightly loaded bearings, the friction coefficient of the bearing increased with the increase in Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document