Methane Diffusion in a Porous Environment

2014 ◽  
Vol 353 ◽  
pp. 50-55 ◽  
Author(s):  
Pavel Staša ◽  
Vladimír Kohut ◽  
Oldřich Kodym ◽  
Zora Jančíková

The paper deals with modeling and simulation of methane flow through the porous environment using the CFD (Computational Fluid Dynamics) software Fluent. We compare three situations, which can occur in areas, where mining activities were closed few years ago, in this article. First case is modeling of methane flow through the rocks. Second event is situation where the thin water layer is situated at the surface. The last one is occurrence of groundwater. The article responds to the need for knowledge of natural processes in the given area and it follows our previous papers [1], [2]. Software Gambit was used for creating a geometric model of the working area, for modeling the flow of gas it was used CFD software, Fluent from ANSYS, Inc..

Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 9-17
Author(s):  
Andrea Natale Impiombato ◽  
Giorgio La Civita ◽  
Francesco Orlandi ◽  
Flavia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

As it is known, the Womersley function models velocity as a function of radius and time. It has been widely used to simulate the pulsatile blood flow through circular ducts. In this context, the present study is focused on the introduction of a simple function as an approximation of the Womersley function in order to evaluate its accuracy. This approximation consists of a simple quadratic function, suitable to be implemented in most commercial and non-commercial computational fluid dynamics codes, without the aid of external mathematical libraries. The Womersley function and the new function have been implemented here as boundary conditions in OpenFOAM ESI software (v.1906). The discrepancy between the obtained results proved to be within 0.7%, which fully validates the calculation approach implemented here. This approach is valid when a simplified analysis of the system is pointed out, in which flow reversals are not contemplated.


Author(s):  
Hamid Ait Abderrahamane ◽  
Kamran Siddiqui ◽  
Georgios Vatistas

This paper deals with the dynamics of polygonal shapes resulting from the symmetry breaking of hollow-vortex core in a shallow water layer produced by a rotating disk near the bottom within a stationary cylindrical container. These polygonal shapes are investigated through image analysis. It is found that a given polygon rotates at the frequency close to one–third of the corresponding disk frequency and the flow dynamics around the apexes of the polygon is characterized by a frequency which is close to one–third of the frequency of the given polygonal pattern. The results also suggest a possible resonance between the satellite vortices at the apexes of the patterns and the bulk flow.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
S. Negin Mortazavi ◽  
Donna Geddes ◽  
Fatemeh Hassanipour

This study is a collaborative effort among lactation specialists and fluid dynamic engineers. The paper presents clinical results for suckling pressure pattern in lactating human breast as well as a 3D computational fluid dynamics (CFD) modeling of milk flow using these clinical inputs. The investigation starts with a careful, statistically representative measurement of suckling vacuum pressure, milk flow rate, and milk intake in a group of infants. The results from clinical data show that suckling action does not occur with constant suckling rate but changes in a rhythmic manner for infants. These pressure profiles are then used as the boundary condition for the CFD study using commercial ansys fluent software. For the geometric model of the ductal system of the human breast, this work takes advantage of a recent advance in the development of a validated phantom that has been produced as a ground truth for the imaging applications for the breast. The geometric model is introduced into CFD simulations with the aforementioned boundary conditions. The results for milk intake from the CFD simulation and clinical data were compared and cross validated. Also, the variation of milk intake versus suckling pressure are presented and analyzed. Both the clinical and CFD simulation show that the maximum milk flow rate is not related to the largest vacuum pressure or longest feeding duration indicating other factors influence the milk intake by infants.


2021 ◽  
pp. 1111-1114
Author(s):  
T.G. Potemkina ◽  
◽  
V.L. Potemkin ◽  

Abstract. The sediment load delivery into Lake Baikal from its main tributaries the Selenga, Upper Angara, and Barguzin Rivers has been reduced since the mid-1970s. This is explained by climate change and socioeconomic activities. Integrated analysis of changes in hydro-meteorological parameters (water discharge, sediment load, air temperature, precipitation) and their trends over the period 1946 1975 (baseline) and 1976 2017 (warming) is performed. Changes in natural processes and human activity were negligible during the baseline period. During the warming period, the greatest reduction of the sediment load inflow against the background of temperature rise and precipitation decrease occurred in the interval between 1996 and 2017 in the Selenga River, between 1985 and 2017 in the Upper Angara River, and between 1992 and 2017 in the Barguzin River. The flux of the sediment load into these rivers was 768 103, 88 103, and 29 103 t y 1, respectively. This is 2 3 times less than the average multiyear values for all period of 1946 2017, which are usually used when characterizing sediment load runoff from these rivers. Currently the values in the given intervals correspond to the actual sediment load flux into Lake Baikal from the main tributaries.


2000 ◽  
Vol 122 (3) ◽  
pp. 619-625 ◽  
Author(s):  
J. L. Lage ◽  
B. V. Antohe

Many important technological and natural processes involving flow through porous media are characterized by large filtration velocity. It is important to know when the transition from the linear flow regime to the quadratic flow regime actually occurs to obtain accurate models for these processes. By interpreting the quadratic extension of the original Darcy equation as a model of the macroscopic form drag, we suggest a physically consistent parameter to characterize the transition to quadratic flow regime in place of the Reynolds number, Re. We demonstrate that an additional data set obtained by Darcy, and so far ignored by the community, indeed supports the Darcy equation. Finally, we emphasize that the cubic extension proposed in the literature, proportional to Re3 and mathematically valid only for Re≪1, is irrelevant in practice. Hence, it should not be compared to the quadratic extension experimentally observed when Re⩾O1.[S0098-2202(00)01703-X]


2020 ◽  
Vol 12 (8) ◽  
pp. 1054-1062
Author(s):  
Parth Patpatiya ◽  
Soumya ◽  
Bhavya Shaan ◽  
Bhavana Yadav

In this analysis we have examined the process of the steady state laminar natural convection around heated elliptical plate with Rayleigh number 10^6 positioned inside a circular enclosure. The purpose of the numerical analysis is to analyze the behavior of isotherms, streamlines and heat transfer rate in enclosure plate system due to the variation in the position of elliptical plate (r/D =0.00, 0.05, and 0.2) and aspect ratio, where the given diameter of the enclosure is D and r is the distance between the centre of elliptical plate and centre of circle. Elliptical plate is inclined at different angles and results are summed up in relative manner. There are two cases, in first case aspect ratio a/D and b/D is varied and D is kept constant, whereas in second case aspect ratio a/D and b/D is kept constant and D is varied. Temperature difference between the enclosure and the inner body (i.e., temperature of inner body is kept high as compared to the enclosure) is maintained. Two dimensional study is followed by considering air as a fluid in enclosure. The effects of the Heat Transfer and Flow of Fluid are analyzed by the streamlines and isotherms plotted for the body placed inside enclosure. Value of local Nusselt number (Nu) is also plotted along the wall of elliptical plate and along the surface of the circular enclosure. For every aspect ratio isotherms and streamlines had been plotted. This work has been validated with various other numerical studies and was in good conciliation.


2019 ◽  
Vol 59 (6) ◽  
pp. 1573-1585 ◽  
Author(s):  
S N Patek

Abstract In the course of a single raptorial strike by a mantis shrimp (Stomatopoda), the stages of energy release span six to seven orders of magnitude of duration. To achieve their mechanical feats of striking at the outer limits of speeds, accelerations, and impacts among organisms, they use a mechanism that exemplifies a cascade of energy release—beginning with a slow and forceful, spring-loading muscle contraction that lasts for hundreds of milliseconds and ending with implosions of cavitation bubbles that occur in nanoseconds. Mantis shrimp use an elastic mechanism built of exoskeleton and controlled with a latching mechanism. Inspired by both their mechanical capabilities and evolutionary diversity, research on mantis shrimp strikes has provided interdisciplinary and fundamental insights to the fields of elastic mechanisms, fluid dynamics, evolutionary dynamics, contest dynamics, the physics of fast, small systems, and the rapidly-expanding field of bioinspired materials science. Even with these myriad connections, numerous discoveries await, especially in the arena of energy flow through materials actuating and controlling fast, impact fracture resistant systems.


Sign in / Sign up

Export Citation Format

Share Document