scholarly journals Actual inflow of riverine sediment load into Lake Baikal: main tributaries the Selenga, Upper Angara, and Barguzin Rivers (Russia)

2021 ◽  
pp. 1111-1114
Author(s):  
T.G. Potemkina ◽  
◽  
V.L. Potemkin ◽  

Abstract. The sediment load delivery into Lake Baikal from its main tributaries the Selenga, Upper Angara, and Barguzin Rivers has been reduced since the mid-1970s. This is explained by climate change and socioeconomic activities. Integrated analysis of changes in hydro-meteorological parameters (water discharge, sediment load, air temperature, precipitation) and their trends over the period 1946 1975 (baseline) and 1976 2017 (warming) is performed. Changes in natural processes and human activity were negligible during the baseline period. During the warming period, the greatest reduction of the sediment load inflow against the background of temperature rise and precipitation decrease occurred in the interval between 1996 and 2017 in the Selenga River, between 1985 and 2017 in the Upper Angara River, and between 1992 and 2017 in the Barguzin River. The flux of the sediment load into these rivers was 768 103, 88 103, and 29 103 t y 1, respectively. This is 2 3 times less than the average multiyear values for all period of 1946 2017, which are usually used when characterizing sediment load runoff from these rivers. Currently the values in the given intervals correspond to the actual sediment load flux into Lake Baikal from the main tributaries.

2019 ◽  
Vol 524 ◽  
pp. 57-66 ◽  
Author(s):  
Tatiana Potemkina ◽  
Ekaterina Sutyrina ◽  
Vladimir Potemkin

CATENA ◽  
2017 ◽  
Vol 152 ◽  
pp. 82-93 ◽  
Author(s):  
Jan Pietroń ◽  
Sergey R. Chalov ◽  
Aleksandra S. Chalova ◽  
Alexey V. Alekseenko ◽  
Jerker Jarsjö

2021 ◽  
Vol 298 ◽  
pp. 113413
Author(s):  
Prem Kumar ◽  
Chandra Shekhar Dubey ◽  
Om Kumar ◽  
Shashank Shekhar ◽  
D.P. Shukla ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 1902-1905
Author(s):  
Hua Li You

Water is the basis of natural resources and strategic economic resources.Deteriorated water environment of streams in Shenzhen city could have a great impact on ecological safety, people's health,and economic development.Based on the data of field observation and Remote sensing (RS) image,integrated analysis of the water degradation causes,and the changes of biochemical oxygen demand in five days(BOD5)concentration by mathematical model were carried out,which is on basis of percentage of waste water disposal,fresh water transformation,and harbor excavation, respectively.The results show that degradation causes of water quality were resulted from waste water discharge, harbor construction,and ecological environment damage, which could lead to slowly water exchange. Accordingly,the pollution can be easily to store in the bay,which result in water quality changes.The most important improved countermeasure is the control of waste water, which could be had a great effectiveness to decrease pollution.In addition, fresh water must be supplied after polluted water was cut off,which can be better improvement for water quality.This would be extreme improvement for hydrological dynamics due to 15m harbor excavation,which can significantly reduce BOD5 concentration.The innovation points of this paper is to mathematical model,which is based on the basis of qualitative analysis.


The correct assessment of amount of sediment during design, management and operation of water resources projects is very important. Efficiency of dam has been reduced due to sedimentation which is built for flood control, irrigation, power generation etc. There are traditional methods for the estimation of sediment are available but these cannot provide the accurate results because of involvement of very complex variables and processes. One of the best suitable artificial intelligence technique for modeling this phenomenon is artificial neural network (ANN). In the current study ANN techniques used for simulation monthly suspended sediment load at Vijayawada gauging station in Krishna river basin, Andhra Pradesh, India. Trial & error method were used during the optimization of parameters that are involved in this model. Estimation of suspended sediment load (SSL) is done using water discharge and water level data as inputs. The water discharge, water level and sediment load is collected from January 1966 to December 2005. This approach is used for modelled the SSL. By considering the results, ANN has the satisfactory performance and more accurate results in the simulation of monthly SSL for the study location.


2014 ◽  
Vol 353 ◽  
pp. 50-55 ◽  
Author(s):  
Pavel Staša ◽  
Vladimír Kohut ◽  
Oldřich Kodym ◽  
Zora Jančíková

The paper deals with modeling and simulation of methane flow through the porous environment using the CFD (Computational Fluid Dynamics) software Fluent. We compare three situations, which can occur in areas, where mining activities were closed few years ago, in this article. First case is modeling of methane flow through the rocks. Second event is situation where the thin water layer is situated at the surface. The last one is occurrence of groundwater. The article responds to the need for knowledge of natural processes in the given area and it follows our previous papers [1], [2]. Software Gambit was used for creating a geometric model of the working area, for modeling the flow of gas it was used CFD software, Fluent from ANSYS, Inc..


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1505 ◽  
Author(s):  
Mikhail Yu. Semenov ◽  
Yuri M. Semenov ◽  
Anton V. Silaev ◽  
Larisa A. Begunova

The removal of trace metals (TM), dissolved organic carbon (DOC), mineral nitrogen (Nmin.), and polycyclic aromatic hydrocarbons (PAHs) from the water of Lake Baikal and its tributaries was evaluated. The contaminant removal rate (CRR) and the contaminant removal capacity (CRC) were used as water self-purification parameters. The CRR was calculated as the difference between contaminant mass flow rates at downstream and upstream gauging stations. The CRC was calculated as the quotient of the CRR and the change in water discharge between downstream and upstream gauging stations. Whether the CRR and CRC have positive or negative values depends on whether contaminant release or removal occurs in the water body. The CRR depends on the size of the water body. The lowest and the highest CRRs observed for Baikal were equal to −15 mg/s (PAHs) to −7327 g/s (DOC), whereas the highest PAH and DOC removal rates observed for Selenga River (the major Baikal tributary) in summer were equal to −9 mg/s and −3190 g/s correspondingly. The highest PAH and DOC removal rates observed for small tributaries were equal to 0.0004 mg/s and −0.7 g/s respectively. The amplitude of annual CRR oscillations depends on contaminant abundance. The highest amplitude was typical for most abundant contaminants such as Nmin. and DOC. In unpolluted sections of the Selenga River the highest rates of N and C removal (−85 g/s and −3190 g/s, respectively) were observed in summer and the lowest rates (4 g/s and 3869 g/s, respectively) were observed in the spring. The lowest amplitude was typical for PAHs and some low-abundance TM such as V and Ni. The highest summer rates of V and Ni removal were equal to −378 mg/s and −155 mg/s respectively, whereas lowest spring rates are equal to 296 mg/s and 220 mg/s. The intermediate CRR amplitudes were typical for most abundant TM such as Sr, Al, and Fe. The spatial CRR variability depends on water chemistry and the presence of pollution sources. The lowest (up to 38 g/s) rates of Nmin. removal was observed for polluted lower Selenga sections characterized by low water mineralization and high DOC concentrations. The highest rates (−85 g/s) were observed for unpolluted upper sections. Seepage loss from the river to groundwater was also recognized as an important means of contaminant removal. The CRC values depend mostly on water residence time. The DOC removing capacity value of Baikal (−26 g/m3) were lower than those of Selenga in summer (−35 g/m3) but higher than the CRCs of all tributaries during the other seasons (from 30 mg/m3 to −10 g/m3).


2017 ◽  
Vol 440 ◽  
pp. 12-23 ◽  
Author(s):  
Shushi Li ◽  
Zhijun Dai ◽  
Xuefei Mei ◽  
Hu Huang ◽  
Wen Wei ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Haifang Yao ◽  
Changxing Shi ◽  
Wenwei Shao ◽  
Jianbin Bai ◽  
Hui Yang

Using data of temperature, wind, precipitation, water discharge, and sediment load, the changes in runoff and sediment load of the Xiliugou basin in the upper Yellow River were investigated and the contributions of climate change and human activities to these changes were quantitatively estimated. Results show that the runoff and sediment load of the stream declined gradually in 1960–2012. According to the abrupt change point detected, the runoff and sediment series were divided into two periods: 1960–1998 and 1999–2012. The reductions of runoff and sediment load in 1999–2012 were found to be related to climate change and human activities, and the latter played a dominant role with a contribution of about 68% and 75%, respectively. The effects of rainfall intensity should be considered to avoid overestimating or underestimating the contributions of rainfall changes to the variations of runoff and sediment load in the semiarid region. An inspection of changes in water discharge and sediment regime indicated that the frequency of discharge between 0 and 5 m3/s increased while that between 5 and 1000 m3/s decreased in 2006–2012. This phenomenon can be attributed principally to the soil and water conservation practices.


Sign in / Sign up

Export Citation Format

Share Document