Ship Movements’ Analysis in a Physical Scale Model

2017 ◽  
Vol 372 ◽  
pp. 132-141
Author(s):  
Liliana Pinheiro ◽  
Joana Simão ◽  
João Alfredo Santos ◽  
Conceição Juana Fortes

A set of physical model tests was run in to characterize the ship’s response to different wave conditions going from frequently-occurring conditions up to extreme ones. Several wave heights, periods and directions were generated. The waves around the ship were measured with probes and the movements of the ship were measured with a fiber-optic gyrocompass. Transfer functions are established and compared with numerical ones obtained with the WAMIT model.

2012 ◽  
Vol 256-259 ◽  
pp. 1928-1936
Author(s):  
Yan Qiu Meng ◽  
Guo Ping Chen ◽  
Shi Chang Yan

Impulsive pressure induced by waves is an important factor to be considered in the design of offshore structures. This paper presents results from physical model tests on the impulsive pressure on deck of unsheltered jetties and similar structures exposed to directional waves in the presence of currents. The pressures were measured on a 1:50 scale model of a jetty head with down-standing beams and berthing members. Different incident wave angles, the current velocities and the angles between wave and current were considered to identify the effects of these factors on the impulsive pressures. Data collected from model tests were analyzed to gain insights on the mechanics of the impulsive pressure under different wave and current conditions. It is shown that the impulsive pressure is sensitive to the wave directionality and the current magnitude.


2012 ◽  
Vol 1 (33) ◽  
pp. 70 ◽  
Author(s):  
William Veale ◽  
Tomohiro Suzuki ◽  
Toon Verwaest ◽  
Koen Trouw ◽  
Tina Mertens

Wave overtopping tests were performed with a 1:25 physical scale model to determine the optimal geometry for design of new wave return walls at Wenduine, Belgium. Wave overtopping on the shallow foreshore at Wenduine was found to be dominated by low-frequency infragravity waves (f < 0.04 Hz at prototype scale). Mean wave overtopping discharge measured with the physical model compared well with the Van Gent (1999) empirical overtopping equations for shallow foreshores. Physical model tests confirmed that the stilling wave basin concept proposed by Geerearts, et al. (2006) and wave wall parapet concepts of van Doorslaer & De Rouck (2010) were effective at reducing the wave wall height required to meet the tolerable discharge overtopping standards.


Author(s):  
Jose A. GONZALEZ-ESCRIVA ◽  
Josep R. MEDINA ◽  
Joaquin M. GARRIDO

ARJ-R caissons are based on the "long-circuit" concept (Medina et al, 2016) that allows the extension of the destructive wave interference mechanism to mitigate low frequency oscillations without enlarging the width of the caisson. The performance of the ARJ-R caissons is referred to its reflection coefficient (Cr) which was obtained through large-scale physical model tests (Gonzalez-Escriva et al, 2018). In this paper, the effectiveness of Anti-Reflective Jarlan-type structures for Port Resonance mitigation (ARJ-R) has been assessed numerically for the port of Denia (Spain). ARJ-R structures are constructible, with similar dimensions as conventional vertical quay caissons and with a similar cost (15percent more than conventional vertical caisson).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/LomQEVpvjik


2012 ◽  
Vol 1 (33) ◽  
pp. 5 ◽  
Author(s):  
Hernan Fernandez ◽  
Gregorio Iglesias ◽  
Rodrigo Carballo ◽  
Alberte Castro ◽  
Marcos Sánchez ◽  
...  

The development of efficient, reliable Wave Energy Converters (WECs) is a prerequisite for wave energy to become a commercially viable energy source. Intensive research is currently under way on a number of WECs, among which WaveCat©—a new WEC recently patented by the University of Santiago de Compostela. In this sense, this paper describes the WaveCat concept and its ongoing development and optimization. WaveCat is a floating WEC intended for operation in intermediate water depths (50–100 m). Like a catamaran, it consists of two hulls—from which it derives its name. The difference with a conventional catamaran is that the hulls are not parallel but convergent; they are joined at the stern, forming a wedge in plan view. Physical model tests of a 1:30 model were conducted in a wave tank using both regular and irregular waves. In addition to the waves and overtopping rates, the model displacements were monitored using a non-intrusive system. The results of the physical model tests will be used to validate the 3D numerical model, which in turn will be used to optimize the design of WaveCat for best performance under a given set of wave conditions.


Author(s):  
Liliana Pinheiro ◽  
Hossam Abdelwahab ◽  
Joao A. Santos ◽  
Conceicao Fortes ◽  
Carlos Guedes Soares

This paper describes the physical model, experimental setup and tests performed to study the motions and forces of a ship moored to the pier A at the Leixoes oil terminal, following the breakwater's extension at 300m, for different sea states. The Leixoes port layout was implemented at scale 1:80 with the detailed model similar to the prototype bathymetry and surrounding structures. The moored ship is a scale model of an oil tanker with a total length of 3.43 m and 0.135 m draft.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/ny5ByZtdjTs


Author(s):  
Wouter Ockeloen ◽  
Coen Kuiper ◽  
Sjoerd van den Steen

The 'Afsluitdijk' is a 32 km enclosure dam which separates the Wadden sea and the Lake IJssel. The dam currently undergoes a major rehabilitation to meet the requirements with regard to water safety. The Dutch Ministry of infrastructure and Water Management (Rijkswaterstaat division) has commissioned Levvel, a consortium of BAM, Van Oord and Rebel, to prepare the design and carry out the reconstruction of the dam including sluices and highway. The project includes reinforcement of the armour layers and wave overtopping reduction. As part of the contract Rijkswaterstaat prescribed the contractor (Levvel) to verify the design with large scale physical model tests (min. 1:3 scale). These tests were carried out in the Delta Flume of Deltares. Prior to the large scale tests, smaller scale tests (1:20) have been carried out to optimize the design with regard to armour stability and wave overtopping. The research described here focuses on the wave overtopping.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/kPga0wVCCIE


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yong Zhang ◽  
Zhiguo Cao ◽  
Xiaomeng Shi

The cement-plaster bonded rock-like material is one of the most commonly used materials to simulate different rocks in physical model tests. However, the applicability of this material in solid-fluid coupling model tests is not clear because there are few research studies on the water-physical properties of this material and its similarity to the actual rock is uncertain. This paper presents a systemic experimental study on the water-physical properties of the cement-plaster bonded rock-like materials. The parameters of rock-like materials, including water absorption, softening coefficient, and permeability coefficient, were compared with those of actual rocks to analyse the applicability of such material. Then, the influence of proportion on the water-physical properties of this material was discussed. By multiple regression analysis of the test results, empirical equations between the water-physical parameters and proportions were proposed. The equations can be used to estimate the water-physical properties of cement-plaster bonded rock-like materials with specific proportion and thus to select suitable materials in the solid-fluid coupling physical model tests.


Sign in / Sign up

Export Citation Format

Share Document