Thermo-Solutal Chemically Reacting Micropolar Fluid Past a Permeable Stretching Porous Sheet

2019 ◽  
Vol 392 ◽  
pp. 42-59 ◽  
Author(s):  
M.D. Shamshuddin ◽  
Thirupathi Thumma ◽  
S.R. Mishra

The boundary layer flow, heat and mass transfer over a permeable stretching sheet due to a chemically reacting micropolar fluid with slip and convective boundary conditions have been analyzed. Transverse magnetic field clubbed with electric field is also considered for the sake of brevity. Governing nonlinear coupled PDEs are transformed to nonlinear ODEs with the use of suitable similarity transformation. However, analytical solutions to these transformed equations are not useful therefore; numerical solution is carried out using Runge-Kutta fourth order with shooting technique. The characteristics of the embedded parameters are obtained and presented through graphs. Validation of the proposed work with earlier established results are shown in tables and these are in good agreement. From the careful observation the major outcomes are: induced magnetic field decelerates the flow, enhances the thickness of thermal boundary layer temperature whereas applied electric field decelerates the thickness of thermal boundary layer. Both electric field and slip parameter accelerates the angular momentum. Temperature and concentration magnitudes are accelerated at the sheet with an increase of slip parameter. Furthermore, Schmidt number and first order chemical reaction reduces the concentration boundary layer thickness. PACS Number: 05.45-a; 05.70-Ce.

Author(s):  
Mohd Rijal Ilias ◽  
Noraihan Afiqah Rawi ◽  
Sharidan Shafie

The present study analyzed the influence of aligned and transverse magnetic field on two dimensional natural convection boundary layer flow of a ferrofluid over a semi-infinte fixed vertical plate in the presence of convective boundary condition. It is assumed that the left surface of the plate is in contact with a hot fluid while the cold fluid on the right surface. Two different base fluids (water and kerosene) containing magnetite (Fe3O4) as ferroparticle are considered. The governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations using similarity variables. The resultant system of equations is then solved numerically by using Keller-Box method.  Numerical results for the skin friction coefficient and local Nusselt number were presented whilst the velocity and temperature profiles illustrated graphically and analyzed. The effect of the inclined angle, magnetic field parameter, volume fraction, Grashof number and Biot number on the flow field were discussed. It is found that the heat transfer rate at the plate surface with Fe3O4- kerosene ferrofluid is higher than Fe3O4- water.


2013 ◽  
Vol 31 (9) ◽  
pp. 1535-1541 ◽  
Author(s):  
K.-I. Nishikawa ◽  
P. Hardee ◽  
B. Zhang ◽  
I. Duţan ◽  
M. Medvedev ◽  
...  

Abstract. We have investigated the generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin–Helmholtz) instabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012), the structure of the kinetic Kelvin–Helmholtz instability (KKHI) of our jet-sheath configuration is slightly different, even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field Ez, perpendicular to the flow boundary, and the magnetic field By, transverse to the flow direction. After the By component is excited, an induced electric field Ex, parallel to the flow direction, becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios mi/me = 1836 and mi/me = 20 are similar. In our simulations saturation in the nonlinear stage is not as clear as in counter-streaming cases. The growth rate for a mildly-relativistic jet case (γj = 1.5) is larger than for a relativistic jet case (γj = 15).


2020 ◽  
Vol 9 (1) ◽  
pp. 156-168
Author(s):  
Seyed Mahdi Mousavi ◽  
Saeed Dinarvand ◽  
Mohammad Eftekhari Yazdi

AbstractThe unsteady convective boundary layer flow of a nanofluid along a permeable shrinking/stretching plate under suction and second-order slip effects has been developed. Buongiorno’s two-component nonhomogeneous equilibrium model is implemented to take the effects of Brownian motion and thermophoresis into consideration. It can be emphasized that, our two-phase nanofluid model along with slip concentration at the wall shows better physical aspects relative to taking the constant volume concentration at the wall. The similarity transformation method (STM), allows us to reducing nonlinear governing PDEs to nonlinear dimensionless ODEs, before being solved numerically by employing the Keller-box method (KBM). The graphical results portray the effects of model parameters on boundary layer behavior. Moreover, results validation has been demonstrated as the skin friction and the reduced Nusselt number. We understand shrinking plate case is a key factor affecting non-uniqueness of the solutions and the range of the shrinking parameter for which the solution exists, increases with the first order slip parameter, the absolute value of the second order slip parameter as well as the transpiration rate parameter. Besides, the second-order slip at the interface decreases the rate of heat transfer in a nanofluid. Finally, the analysis for no-slip and first-order slip boundary conditions can also be retrieved as special cases of the present model.


Sign in / Sign up

Export Citation Format

Share Document