To the Issue of Mathematical Modeling of the Red Mud Thickening Process

2021 ◽  
Vol 410 ◽  
pp. 400-404
Author(s):  
Victor I. Salamatov ◽  
Oleg V. Salamatov ◽  
Daria Yu. Zabolotnyaya

The article focuses on the main mathematical modeling principles for engineering processes. The physical model of the red mud thickening process has been formed. The choice of mathematical model type has been described where the mathematical model represents the physicochemical character of the thickening process and allows estimating pulp water-yielding features at the stage of compression. Mathematical modeling of the engineering process, based on the studies of physicochemical patterns in its course and consideration of these patterns in the mathematical model, does not have certain disadvantages. Experimental data, used at the mathematical model formation where the mathematical model represents the physicochemical mechanism of the process, serve for their further analysis, physicochemical and mathematical interpretation. The mathematical model should be used as a method for detecting internal patterns in the process and for identification and quantitative assessment of its features.

2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Author(s):  
Sudhakar Yadav ◽  
Vivek Kumar

This study develops a mathematical model for describing the dynamics of the banana-nematodes and its pest detection method to help banana farmers. Two criteria: the mathematical model and the type of nematodes pest control system are discussed. The sensitivity analysis, local stability, global stability, and the dynamic behavior of the mathematical model are performed. Further, we also develop and discuss the optimal control mathematical model. This mathematical model represents various modes of management, including the initial release of infected predators as well as the destroying of nematodes. The theoretical results are shown and verified by numerical simulations.


2015 ◽  
Vol 14 (2) ◽  
pp. 90 ◽  
Author(s):  
K. L. M. Dos Passos ◽  
B. M. Viegas ◽  
E. N. Macêdo ◽  
J. A. S. Souza ◽  
E. M. Magalhães

The use of the waste of the Bayer process, red mud, is due to its chemical and mineralogical composition that shows a material rich in oxides of iron, titanium and aluminum. Some studies conducted show that this waste can be applied as a source of alternative raw material for concentration and subsequent recovery of titanium compounds from an iron leaching process, which is present in higher amounts, about 30% by weight. To obtain a greater understanding about the leaching kinetics, the information of the kinetic data of this process is very important. In this context, the main objective of this work is the development of a mathematical model that is able to fit the experimental data (conversion / extraction iron, titanium and aluminum) of the leaching process by which is possible to obtain the main kinetic parameters such as the activation energy and the velocity of chemical reactions as well as the controlling step of the process. The development of the mathematical model was based on the model of core decreasing. The obtained model system of ordinary differential equations was able to fit the experimental data obtained from the leaching process, enabling the determination of the controlling step, the rate constants and the activation energies of the leaching process.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


Author(s):  
Petro Martyniuk ◽  
Oksana Ostapchuk ◽  
Vitalii Nalyvaiko

The problem of pollution transfer by water flow in open channel was considered. The mathematical model of the problem was constructed. The numerical solution of the onedimensional boundary problem was obtained. The computational algorithm for solving the problem was programmed to implement. A series of numerical experiments with their further analysis was conducted.


Author(s):  
Edmunds Teirumnieks ◽  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Harijs Kalis

Metals deposition in peat can aid to evaluate impact of atmospheric or wastewaters pollution and thus can be a good indicator of recent and historical changes in the pollution loading. For peat using in agriculture, industrial, heat production etc. knowledge of peat metals content is important. Experimental determination of metals in peat is very long and expensive work. Using experimental data the mathematical model for calculation of concentrations of metals in different points for different layers is developed. The values of the metals (Ca, Mg, Fe, Sr, Cu, Zn, Mn, Pb, Cr, Ni, Se, Co, Cd, V, Mo) concentrations in different layers in peat taken from Knavu peat bog from four sites are determined using inductively coupled plasma optical emission spectrometer. Mathematical model for calculation of concentrations of metal has been described in the paper. As an example, mathematical models for calculation of Pb concentrations have been analyzed.


Author(s):  
Debraj Sarkar ◽  
Debabrata Roy ◽  
Amalendu Bikash Choudhury ◽  
Sotoshi Yamada

Purpose A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against electrical faults and thus ensuring an uninterrupted supply of electricity to the consumers. Previous mathematical models developed to describe the SISFCL use a simple flux density-magnetic field intensity curve representing the ferromagnetic core. As the magnetic state of the core affects the efficient working of the device, this paper aims to present a novel approach in the mathematical modeling of the device with the inclusion of hysteresis. Design/methodology/approach The Jiles–Atherton’s hysteresis model is utilized to develop the mathematical model of the limiter. The model is numerically solved using MATLAB. To support the validity of model, finite element model (FEM) with similar specifications was simulated. Findings Response of the limiter based on the developed mathematical model is in close agreement with the FEM simulations. To illustrate the effect of the hysteresis, the responses are compared by using three different hysteresis characteristics. Harmonic analysis is performed and comparison is carried out utilizing fast Fourier transform and continuous wavelet transform. It is observed that the core with narrower hysteresis characteristic not only produces a better current suppression but also creates a higher voltage drop across the DC source. It also injects more harmonics in the system under fault condition. Originality/value Inclusion of hysteresis in the mathematical model presents a more realistic approach in the transient analysis of the device. The paper provides an essential insight into the effect of the core hysteresis characteristic on the device performance.


Author(s):  
Valeriy Afanasievich Perminov

The chapter presents a mathematical model of the initiation and spread of the steppe fire. The mathematical model is based on the laws of mechanics of multiphase reacting media. The main physicochemical processes describing the drying, pyrolysis, and combustion of gaseous and condensed pyrolysis products are taken into account. As a result of the numerical solution, the distributions of the velocity, temperature, and concentration fields of the components of the gas and condensed phases were determined. The dependence of the rate of spread of the steppe fire on the main parameters of the state of vegetation cover and wind speed was studied. The mathematical model presented in the chapter can be used to predict the spread of steppe fires for various types of steppe vegetation and meteorological conditions, as well as for preventive measures.


2015 ◽  
Vol 792 ◽  
pp. 370-374 ◽  
Author(s):  
Natalia Tatarinova ◽  
Dmitry Suvorov

The article proposes and being tested a methodology that allows using the mathematical model developed to clarify the possible impact of a precise process moisture measurement on the performance of energy efficiency of the cogeneration turbines.


2018 ◽  
Vol 226 ◽  
pp. 04028
Author(s):  
Alexander V. Pilipenko ◽  
Andrei A. Tashev ◽  
Nail K. Sharifov

In this paper, the authors produce a mathematical modelling of a piston pump, develop algorithms for the operation of a protection system, taking into account the results of mathematical modelling. The authors test the mathematical model on the operation of real equipment and analyze its accuracy.


Sign in / Sign up

Export Citation Format

Share Document