Strains under Angular Pressing of a Strip from a Cylindrical Billet

2021 ◽  
Vol 410 ◽  
pp. 80-84
Author(s):  
Yuriy N. Loginov ◽  
Yuliya V. Zamaraeva ◽  
Dar'ya A. Komkova

The scheme of non-equal channel angular pressing (non-ECAP) of a magnesium billet has been analyzed. The modeling was performed by DEFORM-2D software. A high level of strain is shown to be achieved during non-ECAP. It leads to more homogenous structure refinement of magnesium and plasticity improvement that could favorably affect the subsequent deformation of a Mg-strip by cold rolling. At non-ECAP-process, the upper part of the strip is noted to be hardened more than the lower one. The lower part is supposed to be formed by extensional strain mainly, meanwhile for the upper one, the prime mechanism is likely to be shear strain. Based on hardness measurement of the samples cut from the obtained Mg-strip, conclusions have been made about the influence of the accumulated strain during non-ECAP on the strength properties of the strip.

2018 ◽  
Vol 275 ◽  
pp. 134-146
Author(s):  
Stanislav Rusz ◽  
Ondřej Hilšer ◽  
Stanislav Tylšar ◽  
Lubomír Čížek ◽  
Tomasz Tański ◽  
...  

The technology of structure refinement in materials with the aim of achieving substantial mechanical properties and maintaining the required plasticity level is becoming increasingly useful in industrial practice. Magnesium alloys are very progressive materials for utilization in practice thanks to their high strength-to-weight ratios (tensile strength/density). The presented paper analyses the effect of the input heat treatment of the AZ31 alloy on the change of structure and strength properties through the process of severe plastic deformation (SPD), which finds an increasing utilization, especially in the automotive and aviation industry. For the study of the influence of the SPD process (ECAP method) on the properties of the AZ31 alloy, two types of thermal treatment of the initial state of the structure were selected. The analysis of the structure of the AZ31 alloy was performed in the initial state without heat treatment and subsequently after heat treatment. In the next part, the influence of the number of passes on the strengthening curves was evaluated. Mechanical properties of the AZ31 alloy after ECAP were evaluated by hardness measurement and completed by structure analysis.


ROTASI ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 41
Author(s):  
Rusnaldy Rusnaldy ◽  
Norman Iskandar ◽  
Muhammad Khairul Rais ◽  
Wisnu Tri Erlangga

In current study, Equal Channel Angular Pressing (ECAP) process was applied to pure aluminium rod. The effect of the number of passes on hardness and electrical conductivity ECAP samples was investigated. The dimensions of ECAP die for 12 mmm diameter workpieces are designed with intersect angle of 120o. The experiments were carried out by using samples cut from an ingot and a rod and machined to a size of 12 mm in diameter and 50 mm in length. The workpiece was pressed into the ECAP die up to 7 passes at room temperature.After deformation, all samples were subjected to a hardness test, an electrical conductivity test and for optical microscope study. The hardness measurement of the ECAP samples suggested that enhanced hardness would be obtained by repeating ECAP process.Increasing the electrical conductivity of the ECAP samples indicatesthat there is no dislocation formation due to increasing plastic deformation in ECAP process


2010 ◽  
Vol 638-642 ◽  
pp. 1940-1945
Author(s):  
Lechoslaw Trebacz ◽  
Henryk Paul ◽  
Łukasz Madej ◽  
Maciej Pietrzyk

The development of the new technology for manufacturing of multi layer aluminium based materials for heat radiators is the subject of this work. Modern aluminium alloys can be specially processed in a controlled manner to obtain nano(mikro) structures. These ultra fine grained structures play a significant role because they provide a possibility to obtain final product that is characterized by elevated strength properties and, at the same time, good anticorrosion and soldering properties. A detailed understanding of these ultra fined structures using a combination of numerical modelling and experimental analysis is presented in this paper. Particular attention is put on implementation of the microstructure evolution model into the finite element software to simulate Equal Channel Angular Pressing (ECAP) process. Examples of the obtained results are presented and discussed.


Author(s):  
L. F. Sennikova ◽  
G. K. Volkova ◽  
V. M. Tkachenko

The results of studies of the stress-strain state of copper M0b after deformation under different schemes of equal channel angular pressing (ECAP) are presented. The level of macro and micro stresses in copper has been determined in various ECAP modes. It is shown that the strength properties, deformation porosity and parameters of the fine copper structure differ depending on the loading pattern.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 219
Author(s):  
Bernd-Arno Behrens ◽  
Kai Brunotte ◽  
Tom Petersen ◽  
Roman Relge

The present work deals with adjusting a fine-grained microstructure in iron-rich iron-aluminium alloys using the ECAP-process (Equal Channel Angular Pressing). Due to the limited formability of Fe-Al alloys with increased aluminium content, high forming temperatures and low forming speeds are required. Therefore, tool temperatures above 1100 °C are permanently needed to prevent cooling of the work pieces, which makes the design of the ECAP-process challenging. For the investigation, the Fe-Al work pieces were heated to the respective hot forming temperature in a chamber furnace and then formed in the ECAP tool at a constant punch speed of 5 mm/s. Besides the chemical composition (Fe9Al, Fe28Al and Fe38Al (at.%—Al)), the influences of a subsequent heat treatment and the holding time on the microstructure development were investigated. For this purpose, the average grain size of the microstructure was measured using the AGI (Average Grain Intercept) method and correlated with the aforementioned parameters. The results show that no significant grain refinement could be achieved with the parameters used, which is largely due to the high forming temperature significantly promoting grain growth. The holding times in the examined area do not have any influence on the grain refinement.


2015 ◽  
Vol 641 ◽  
pp. 286-293
Author(s):  
Beata Leszczyńska-Madej ◽  
Maria W. Richert ◽  
Agnieszka Hotloś ◽  
Jacek Skiba

The present study attempts to apply Equal-Channel Angular Pressing (ECAP) to 99.99% pure copper. ECAP process was realized at room temperature for 4, 8 and 16 passes through route BC using a die having angle of 90°. The microstructure of the samples was investigated by means both light and transmission electron microscopy. Additionally the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. There were some different types of bands in the microstructure after deformation. The shear bands, bands and in the submicron range the microshear bands and microbands are a characteristic feature of the microstructure of copper. Also characteristic was increasing of the number of bands with increasing of deformation and mutually crossing of the bands. The intersection of a bands and microbands leads to the formation of new grains with the large misorientation angle. The measured grain/subgrain size show, that the grain size is maintained at a similar level after each stage of deformation and is equal to d = 0.25 – 0.32 μm.


2014 ◽  
Vol 609-610 ◽  
pp. 495-499
Author(s):  
Guo Cheng Ren ◽  
Xiao Juan Lin ◽  
Shu Bo Xu

The microstructure and material properties of AZ31 magnesium alloy are very sensitive to process parameters, which directly determine the service properties. To explore and understand the deformation behavior and the optimization of the deformation process, the microstructure evolution during equal channel angular pressing was predicted by using the DEFORM-3D software package at different temperature. To verify the finite element simulation results, the microstructure across the transverse direction of the billet was measured. The results show that the effects strain and deformation temperatures on the microstructure evolution of AZ31 magnesium during ECAP process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of ECAP process for AZ31 magnesium.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3430
Author(s):  
Grzegorz Golański ◽  
Jacek Słania ◽  
Marek Sroka ◽  
Paweł Wieczorek ◽  
Michał Urzynicok ◽  
...  

In addition to good high-temperature creep resistance and adequate heat resistance, steels for the power industry must have, among other things, good weldability. Weldability of such steels is one of the criteria determining whether or not the material is suitable for applications in the power industry. Therefore, when materials such as martensitic steel Thor 115 (T115) are introduced into the modern power industry, the quality and properties of welded joints must be assessed. The paper presents the results of metallographic and mechanical investigations of T115 martensitic steel welded joints. The analysis was carried out on joints welded with two filler metals: WCrMo91 (No. 1) and EPRI P87 (No. 2). The scope of the investigations included: microstructural investigations carried out using optical, scanning and transmission electron microscopy and mechanical testing, i.e., Vickers microhardness and hardness measurement, static tensile test and impact test. The macro- and microstructural investigations revealed correct structure of the weld, without welding imperfections. The microstructural investigations of joint No. 1 revealed a typical structure of this type of joint, i.e., the martensitic structure with numerous precipitates, while in joint No. 2, the so-called Nernst’s layers and δ-ferrite patches were observed in the weld fusion zone as well as the heat affected zone (HAZ). The mechanical properties of the test joints met the requirements for the base material. A slight influence of the δ-ferrite patch on the strength properties of joint No. 2 was observed, and its negative effect on the impact energy of HAZ was visible.


2017 ◽  
Vol 23 (3) ◽  
pp. 222 ◽  
Author(s):  
Ondřej Hilšer ◽  
Stanislav Rusz ◽  
Wojciech Maziarz ◽  
Jan Dutkiewicz ◽  
Tomasz Tański ◽  
...  

<p>Equal channel angular pressing (ECAP) method was used for achieving very fine-grained structure and increased mechanical properties of AZ31 magnesium alloy. The experiments were focused on the, in the initial state, hot extruded alloy. ECAP process was realized at the temperature 250°C and following route Bc. It was found that combination of hot extrusion and ECAP leads to producing of material with significantly fine-grained structure and improves mechanical properties. Alloy structure after the fourth pass of ECAP tool with helix matrix 30° shows a fine-grained structure with average grain size of 2 µm to 3 µm and high disorientation between the grains. More experimental results are discussed in this article.</p>


Author(s):  
I.V. Smirnov ◽  
◽  
K.V. Grinyaev ◽  
A.N. Tyumentsev ◽  
A.D. Korotaev ◽  
...  

A study of the features of structural-phase state, thermal stability, mechanical properties characteristics and fracture features of V-Cr-Ta-Zr alloy after chemical-heat treatment by the method of nonequilibrium internal oxidation has been carried out. It has been established that, in contrast to chemical-heat treatment in a defect state, the effect of oxygen when introduced into a material with a stabilized structure is observed only at high concentrations. At such oxygen concentrations, which ensure the maximum binding of Zr into particles based on ZrO2, the alloy under study demonstrates a high level of thermal stability and strength properties. These effects are associated with the implementation of disperse strengthening according to the Orowan mechanism by nanosized ZrO2 particles characterized by high thermal stability. The concentration and nature of the distribution of oxygen predetermine the spatial distribution of nanosized ZrO2 particles formed during chemical-heat treatment, which manifests itself in fracture features of the material at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document