Effects of Different Soccer Boots on Biomechanical Characteristics of Cutting Movement on Artificial Turf

Author(s):  
Dong Sun ◽  
Yao Dong Gu ◽  
Gusztáv Fekete ◽  
Justin Fernandez

The purpose of this study was to testing for difference in performance and injury risks between three different outsole configuration soccer boots on artificial turf. Fourteen experienced soccer players performed 45° cut test. They selected soccer boots with artificial ground design (AG), turf cleats boots (TF) and indoor boots (IN) randomly. A Vicon three dimension motion analysis system was used to capture kinematic data and Kistler force platform was used to record the ground reaction force. Novel Pedar-X insole plantar pressure measurement system was utilized to collect the plantar pressure synchronized. During 45° cut, artificial ground design (AG) showed significantly smaller peak knee flexion (p<0.001) and greater abduction angles (p<0.001) than indoor boots (IN). AG showed significantly greater vertical average loading rate (VALR) compared with TF (p=0.005) and IN (p=0.003). The results of plantar pressure found that AG showed the highest peak pressure and force-time integral in the heel (H) and medial forefoot (MFF). Artificial ground design (AG) and turf cleats (TF) may offer a performance benefit on artificial turf compared to IN. In summary, AG may enhance athletic performance on artificial turf, but also may undertake higher risks of non-contact injuries compared with TF and IN.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4760 ◽  
Author(s):  
Changxiao Yu ◽  
Shirui Shao ◽  
Julien S. Baker ◽  
Yaodong Gu

Background The table tennis serve involves complex spatial movements combined with biomechanial characteristics. Although the differences in lower-limb biomechanial characteristics to a great extent influence the translational and spinning velocity of the ball when using the different styles of table tennis serve, few researchers have studied their mechanics. Therefore, the aim of this study was to investigate the differences in lower-limb activity between the squat and standing serves during a table tennis short serve. Methods Ten advanced female table tennis participants performed a squat serve and standing serve in random order. A Vicon motion analysis system and a Novel Pedar insole plantar pressure measurement system were used to record kinematics and kinetics data, respectively. Results Key findings from the study were that the squat serve not only showed significantly larger hip and knee flexion, as well as ankle dorsiflexion, it also showed significantly larger hip adduction and external knee rotation, with larger changing angular rate of the lower limb joints in the sagittal and the transverse planes when the two serving styles were compared. In addition, the force-time integral (FTI) was higher in the rear foot area for the standing serve. Discussion The results demonstrated that the squat serve needs higher lower limb drive during a table tennis short serve compared with a standing serve. These biomechanical considerations may be beneficial for table tennis athletes and coaches as a method of optimizing performance characteristics during both competition and training.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Jinsup Song ◽  
Julie Lin ◽  
Tyler Austin ◽  
Richard Teter ◽  
Kevin Oshiokpekhai ◽  
...  

Background Low-Dye taping is commonly used to manage foot pathologies and pain. Precut one-piece QUICK TAPE was designed to facilitate taping. However, no study to date has demonstrated that QUICK TAPE offers similar support and off-loading as traditional taping. Methods This pilot study compared the performance of QUICK TAPE and low-Dye taping in 20 healthy participants (40 feet) with moderate-to-severe pes planus. Study participants completed arch height index (AHI), dynamic plantar assessment with a plantar pressure measurement system, and subjective rating in three conditions: barefoot, low-Dye, and QUICK TAPE. The order of test conditions was randomized for each participant, and the taping was applied to both feet based on a standard method. A generalized estimating equation with an identity link function was used to examine differences across test conditions while accounting for potential dependence in bilateral data. Results Participants stood with a significantly greater AHI (P = .007) when either taping was applied compared with barefoot. Participants also demonstrated significantly different plantar loading when walking with both tapings versus barefoot. Both tapings yielded reduced force-time integral (FTI) in the medial and lateral forefoot and increased FTI under toes. Unlike previous studies, however, no lateralization of plantar pressure was observed with either taping. Participants ranked both tapings more supportive than barefoot. Most participants (77.8%) ranked low-Dye least comfortable, and 55.6% preferred QUICK TAPE over low-Dye. Conclusions Additional studies are needed to examine the clinical utility of QUICK TAPE in individuals with foot pathologies such as heel pain syndrome and metatarsalgia.


Author(s):  
Jie Yuan Qian ◽  
Shi Rui Shao ◽  
Ying Yue Zhang ◽  
Sergey Popik ◽  
Yao Dong Gu

This study aims to investigate the kinematics and kinetics of wearing of the different height of shoe toe box walking and jogging. A total of 20 normal males participated in the experiment controlling the jogging speed of 8 km/h and the walking speed of 4 km/h. The Vicon three dimension motions analysis system was taken to capture the kinematics of lower extremity while jogging and walking text. The Novel Pedar-X insole plantar pressure measurement system was utilized to collect the plantar pressure in specific anatomical areas. The function of toe box regions is analyzed through the comparison of plantar pressure parameters and kinematic results. They performed both texts under four conditions which is common sneaker (A), sneaker of Marathon (B), flat sneaker (C) and specially customized sneaker (D). During the walking phase, the ankle of C showed significantly less peak plantar flexion than other shoes. During the jogging phase, the ankle for D showed significantly larger peak flexion than other shoes, and the C is smallest. Meanwhile, the ankle and knee of all shoes expressed different changes in the sagittal and frontal plane. The D of peak pressure and pressure-time integral are obviously higher than other shoes in BT and LFF area. The contact time of D and other shoes exist significant differences in jogging. Compare to wearing different height of shoe box sneakers, the D shoe wearer may enhance BT and forefoot areas power and proprioceptive, to improve athletic performance and to keep balance. The C shoe does not fit sport because it’s having more larger plantar pressure in most of the foot region than other shoes, easy to cause the injury of lower limbs. The A and B shoes are no sensible difference in jogging and walking.


2011 ◽  
Vol 11 (05) ◽  
pp. 1071-1083 ◽  
Author(s):  
SU-YA LEE ◽  
CHEN-YU CHOU ◽  
YI-YOU HOU ◽  
YU-LIN WANG ◽  
CHICH-HAUNG YANG ◽  
...  

The aim of this study was to investigate the foot plantar pressure distribution and the effect of different step width during walking. Methods: Nineteen female volunteers who aged 18~30 years old and with no history of lower extremity injury were considered. Subjects walked at a pre-determined set speed with varied step width (5 cm, 10 cm, and 20 cm) for three trials at each step width. This study used an in-sole plantar pressure measurement system to collect the peak pressure, maximum ground reaction force, pressure–time integral, and force–time integral data of eight different foot regions. Results: The data revealed that the peak plantar foot pressure on the medial arch increased with wider step width (p < 0.05). In contrast, maximum ground reaction force, peak plantar pressure, pressure–time integral, and force–time integral on the lateral arch and lateral side of the metatarsals decreased with wider step width (p < 0.05). Conclusion: The results of this study revealed that smaller step width during walking result in decreasing the pressure on the medial arch of the foot. It may have the relieving effect for clients with pes planus and it can be a reference for rehabilitation clinicians while treating the above-mentioned subjects.


2012 ◽  
Vol 12 (05) ◽  
pp. 1250030 ◽  
Author(s):  
LIN-HWA WANG ◽  
KUO-CHENG LO ◽  
FONG-CHIN SU

The present study investigated the adequacy of the interaction between the center of mass (COM) and the center of pressure (COP) for maintaining dynamic stability during Tai Chi Chuan (TCC) Push Hands movements in a fixed stance. The COM of the whole body and COP were calculated. Four TCC experts, with 10.3 ± 1.7 years' experience in the Push Hands technique, and 4 TCC beginners, with 2.5 ± 1.3 years' Push Hands experience, were recruited. An Expert Vision Eagle motion analysis system collected kinematic data and 4 Kistler force plates collected the ground reaction force data. The expert group of TCC practitioners showed a significantly more vertical (P = 0.001) direction in the neutralizing circle, and significantly larger values for anterior–posterior (A–P) (P = 0.006) and vertical (P = 0.0004) displacement in the enticing circle, than the beginner group. Compared with the beginner group, the expert group demonstrated significantly greater velocity A–P (P = 0.001) and vertical (P = 0.001) COM displacements in the enticing circle. A significant extent main effect (P = 0.0028) was observed for the COPA–P excursion between the expert and beginner groups during Push Hands movements. The greater A–P force generated by both groups during the initiation of the Push Hands cycle probably reflects the more rapid and forward-oriented nature of this movement. The TCC beginners might have difficulties with movement transfers because of disruptions in the temporal sequencing of the forces. Overall, results indicated that the initial experience-related differences in COM transfers are reflected in the Push Hands movement cycle.


2013 ◽  
Vol 694-697 ◽  
pp. 3063-3066 ◽  
Author(s):  
Guo Qiang Li ◽  
Hao Chen ◽  
Jiang Guo Zhang

The purpose of this study was to investigate plantar pressure of male adults under different sing-shoulder weight during walking. Experiments were conducted at single-shoulder load styles in four different weight conditions by three-dimension force platform system. Four weight conditions were 5%, 10%, 15% and 20% of body weight. Seven characteristic parameters were selected and analyzed by statistical methods. The results showed a significant difference for the male subjects at 13% of body weight loads comparing with natural walk. Ground reaction force was employed to analyze human movement. This study was designed to obtain the data of foot pressure, which was important to the balance of control of biped robot.


2011 ◽  
Vol 32 (11) ◽  
pp. 1075-1080 ◽  
Author(s):  
Heather Schmidt ◽  
Lindsay D. Sauer ◽  
Sae Yong Lee ◽  
Susan Saliba ◽  
Jay Hertel

Background: Previous plantar pressure research found increased loads and slower loading response on the lateral aspect of the foot during gait with chronic ankle instability compared to healthy controls. The studies had subjects walking barefoot over a pressure mat and results have not been confirmed with an in-shoe plantar pressure system. Our purpose was to report in-shoe plantar pressure measures for chronic ankle instability subjects compared to healthy controls. Methods: Forty-nine subjects volunteered (25 healthy controls, 24 chronic ankle instability) for this case-control study. Subjects jogged continuously on a treadmill at 2.68 m/s (6.0 mph) while three trials of ten consecutive steps were recorded. Peak pressure, time-to-peak pressure, pressure-time integral, maximum force, time-to-maximum force, and force-time integral were assessed in nine regions of the foot with the Pedar-x in-shoe plantar pressure system (Novel, Munich, Germany). Results: Chronic ankle instability subjects demonstrated a slower loading response in the lateral rearfoot indicated by a longer time-to-peak pressure (16.5% ± 10.1, p = 0.001) and time-to-maximum force (16.8% ± 11.3, p = 0.001) compared to controls (6.5% ± 3.7 and 6.6% ± 5.5, respectively). In the lateral midfoot, ankle instability subjects demonstrated significantly greater maximum force (318.8 N ± 174.5, p = 0.008) and peak pressure (211.4 kPa ± 57.7, p = 0.008) compared to controls (191.6 N ± 74.5 and 161.3 kPa ± 54.7). Additionally, ankle instability subjects demonstrated significantly higher force-time integral (44.1 N/s ± 27.3, p = 0.005) and pressure-time integral (35.0 kPa/s ± 12.0, p = 0.005) compared to controls (23.3 N/s ± 10.9 and 24.5 kPa/s ± 9.5). In the lateral forefoot, ankle instability subjects demonstrated significantly greater maximum force (239.9N ± 81.2, p = 0.004), force-time integral (37.0 N/s ± 14.9, p = 0.003), and time-to-peak pressure (51.1% ± 10.9, p = 0.007) compared to controls (170.6 N ± 49.3, 24.3 N/s ± 7.2 and 43.8% ± 4.3). Conclusion: Using an in-shoe plantar pressure system, chronic ankle instability subjects had greater plantar pressures and forces in the lateral foot compared to controls during jogging. Clinical Relevance: These findings may have implications in the etiology and treatment of chronic ankle instability. Level of Evidence: III, Retrospective Case Control Study


1992 ◽  
Vol 82 (10) ◽  
pp. 507-513 ◽  
Author(s):  
PB Sanfilippo ◽  
RM Stess ◽  
KM Moss

A comparison of five commonly used insole materials (Spenco, PPT, Plastazote, Nickelplast, and Pelite) was made to evaluate their effectiveness in reducing plantar vertical pressures on human subjects during walking. With the use of the EMED-SF pedograph force plate system, dynamic measures of vertical force, force-time integral, peak plantar pressure, pressure-time integral, and area of foot-to-ground contact were compared with the force plate covered with each of the insole materials and without any interface material.


1996 ◽  
Vol 17 (4) ◽  
pp. 204-209 ◽  
Author(s):  
T. W. Kernozek ◽  
E. E. LaMott ◽  
M. J. Dancisak

We examined the reliability of in-shoe foot pressure measurement using the Pedar in-shoe pressure measurement system for 25 participants walking at treadmill speeds of 0.89, 1.12, and 1.34 meters/sec. The measurement system uses EMED insoles, which consist of 99 capacitive sensors, sampled at 50 Hz. Data were collected for 20 seconds at two separate times while participants walked at each gait speed. Differences in some of the loading variables across speed relative to the total foot and across the different anatomical regions were detected. Different anatomical regions of the foot were loaded differently with variations in walking speed. The results indicated the need to control speed when evaluating loading parameters using in-shoe pressure measurement techniques. Coefficients of reliability were calculated. Variables such as peak force for the total foot required two steps to achieve a coefficient of reliability of 0.98. To achieve excellent reliability (>0.90) in the peak force, force time integral, peak pressure, and pressure time integral across the total foot and the seven regions, a maximum of eight steps was needed. In general, timing variables, such as the instant of peak force and the instant of peak pressure, tended to be the least reliable measures.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Ping Huang ◽  
Minjun Liang ◽  
Feng Ren

This study was aimed to analyze the foot posture index and plantar pressure characteristics of fifteen badminton players and fifteen controls. The hypothesis was that people with the habit of playing badminton would be significantly different with nonplaying people in foot posture index, 3D foot surface data, and plantar pressure distribution. Nine regions of plantar pressure were measured by using the EMED force platform, and badminton players showed significantly higher peak pressure in the hallux (p=0.003), medial heel (p=0.016), and lateral heel (p=0.021) and force-time integral in the hallux (p=0.002), medial heel (p=0.026), and lateral heel (p=0.015). There is no asymmetrical plantar pressure distribution between the left foot and the right foot of players. The mean foot posture index values of male and female badminton players are 5.2 ± 1.95 and 5.7 ± 1.15, respectively, and comparatively, those values of male and female controls are 1.5 ± 1.73 and 1.7 ± 4.16, respectively. This study shows that significant differences in morphology between people with the habit of playing badminton and people without that habit could be taken as a factor for a future study in locomotion biomechanics characteristics and foot shape of badminton players and in a footwear design in order to reduce injury risks.


Sign in / Sign up

Export Citation Format

Share Document