Phase Separation Effect in Gelation of 3DOM Bioactive Glass

Author(s):  
Reedwan Bin Zafar Auniq ◽  
Upsorn Boonyang

The quaternary phase bioactive glasses (SiO2-CaO-Na2O-P2O5) were synthesized by the sol-gel process. Pluronic P123, using surfactant as structure-directing agents as well as phase separation inducers. The obtained bioactive glasses were characterized regarding morphology by using the scanning electron microscopy (SEM). Polymer colloidal crystals (CCTs) as the template component yielded either three-dimensionally ordered macroporous (3DOM) structure or hollow spheres shaped bioactive glass. The other type of morphology generation is related to the polymerization-induced phase separation (PIPS) in the gelation process. The heterogeneous precursor i.e. silica-rich regions caused the microspheres and solvent-rich areas produced micrometer-scale void space in bicontinuos structure. While the lower pH of starting precursor in 45S4P showed stronger precursor-template interactions than the 53S4P by generating the completely hollow spheres structure.

2008 ◽  
Vol 396-398 ◽  
pp. 131-134 ◽  
Author(s):  
Ourania Menti Goudouri ◽  
Xanthippi Chatzistavrou ◽  
Eleana Kontonasaki ◽  
Nikolaos Kantiranis ◽  
Lambrini Papadopoulou ◽  
...  

Thermal treatment of bioactive glasses can affect their microstructure and thus their bioactivity. The aim of this study was the characterization of the thermally treated sol-gel-derived bioactive glass 58S at characteristic temperatures and the dependence of its bioactive behavior on the specific thermal treatment. The thermal behavior of the bioactive glass was studied by thermal analysis (TG/DTA). Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffractometry (XRD) were used for the characterization of the bioactive glass. The bioactive behavior in Simulated Body Fluid (SBF) was examined by Scanning Electron Microscopy (SEM-EDS) and FTIR. The major crystal phases after thermal treatment were Calcium Silicates, Wollastonite and Pseudowollastonite, while all thermally treated samples developed apatite after 48 hours in SBF. A slight enhancement of bioactivity was observed for the samples heated at the temperature range 910-970oC.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
U. Boonyang ◽  
F. Li ◽  
A. Stein

In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM) products or shaped bioactive glass nanoparticles. Thein vitrobioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF) at body temperature (37°C) for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.


2008 ◽  
Vol 587-588 ◽  
pp. 62-66 ◽  
Author(s):  
Hermes S. Costa ◽  
Alexandra A.P. Mansur ◽  
Edel Figueiredo Barbosa-Stancioli ◽  
Marivalda Pereira ◽  
Herman S. Mansur

Bioactive glasses are materials that have been used for the repair and reconstruction of diseased bone tissues, as they exhibit direct bonding with human bone tissues. However, bioactive glasses have low mechanical properties compared to cortical and cancellous bone. On the other hand, composite materials of biodegradable polymers with inorganic bioactive glasses are of particular interest to engineered scaffolds because they often show an excellent balance between strength and toughness and usually improved characteristics compared to their individual components. Composite bioactive glass-polyvinyl alcohol foams for use as scaffolds in tissue engineering were previously developed using the sol-gel route. The goal of this work was the synthesis of composite foams modified with higher amounts of PVA. Samples were characterized by morphological and chemical analysis. The mechanical behavior of the obtained materials was also investigated. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioactive glass composition ratios affect the synthesis procedure. Foams with up to 80 wt% polymer content were obtained. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm and improved mechanical properties.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 615
Author(s):  
Basam A. E. Ben-Arfa ◽  
Robert C. Pullar

Bioactive glass scaffolds are used in bone and tissue biomedical implants, and there is great interest in their fabrication by additive manufacturing/3D printing techniques, such as robocasting. Scaffolds need to be macroporous with voids ≥100 m to allow cell growth and vascularization, biocompatible and bioactive, with mechanical properties matching the host tissue (cancellous bone for bone implants), and able to dissolve/resorb over time. Most bioactive glasses are based on silica to form the glass network, with calcium and phosphorous content for new bone growth, and a glass modifier such as sodium, the best known being 45S5 Bioglass®. 45S5 scaffolds were first robocast in 2013 from melt-quenched glass powder. Sol–gel-synthesized bioactive glasses have potential advantages over melt-produced glasses (e.g., greater porosity and bioactivity), but until recently were never robocast as scaffolds, due to inherent problems, until 2019 when high-silica-content sol–gel bioactive glasses (HSSGG) were robocast for the first time. In this review, we look at the sintering, porosity, bioactivity, biocompatibility, and mechanical properties of robocast sol–gel bioactive glass scaffolds and compare them to the reported results for robocast melt-quench-synthesized 45S5 Bioglass® scaffolds. The discussion includes formulation of the printing paste/ink and the effects of variations in scaffold morphology and inorganic additives/dopants.


Author(s):  
Bui Xuan Vuong

In this paper, three ceramic compositions 50SiO2-50CaO (A), 45SiO2-45CaO-10P2O5 (B) and 40SiO2-40CaO-20P2O5 (C) (wt %) were synthesized by using the sol-gel technique. XRD analysis demonstrates that only sample C can form the glass material. Treated temperatures and heated times were also evaluated. Analysis data showed that the bioglass 40SiO2-40CaO-20P2O5 (wt %) can successfully elaborate when the ceramic powder heated at 750 oC for 3 hours. ‘‘In vitro’’ experiment was effectuated to investigate the bioactivity of bioglass 40SiO2-40CaO-20P2O5 by soaking powder samples in SBF solution. Obtained result confirmed the formation of hydroxyapatite (HA) phase on glass’s surface after 15 days of immersion, in which HA formation orients following (211) and (222) miller planes in crystalline structure of HA phase. Keywords Sol-gel; bioglass; hydroxyapatite; SBF; bioactivity References [1] D.F. Williams, Definitions in Biomaterials, Consensus Conference for the European Society for Biomaterials, Chester, UK, 1986.[2] L.L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, 74 (1991) 1487.[3] L.L. Hench, The story of Bioglass, Journal of Materials Science: Materials in Medicine, 17 (2006) 967.[4] X.V. Bui, H. Oudadesse, Y. Le Gal, A. Mostafa, P.Pellen and G. Cathelineau, Chemical Reactivity of Biocomposite Glass-Zoledronate, Journal of the Australian Ceramic Society, 46 (2010) 24.[5] L.L. Hench, Genetic design of bioactive glass, Journal of the European Ceramic Society, 29 (2009) 1257.[6] S. Kumar, P. Vinatier, A. Levasseur, K.J. Rao, Investigations of structure and transport in lithium and silver borophosphate glasses, Journal of Solid State Chemistry, 177 (2004)1723.[7] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method, Journal of Non-Crystalline Solids, 355 (2009) 368.[8] D.B. Joroch, D.C. Clupper, Modulation of zinc release from bioactive sol–gel derived SiO2‐CaO‐ZnO glasses and ceramics, Journal of Biomedical Materials Research Part A, 82A (2007) 575.[9] J. Roman, S. Padilla, M. Vallet-Regi, Sol−Gel Glasses as Precursors of Bioactive Glass Ceramics, Chemistry of Materials, 15 (2003) 798.[10] J. Lao, J.M. Nedelec, Ph. Moretto, E. Jallot, Biological activity of a SiO2-CaO-P2O5 sol-gel glass highlighted by PIXE-RBS methods, Nuclear Instruments and Methods in Physics Research Section B, 245 (2006) 511.[11] [11] M. Vallet-Regi, L. Ruiz-Gonzalez, I. Izquierdo, J.M. Gonzalez-Calbet, Revisiting silica based ordered mesoporous materials: medical applications, Journal of Materials Chemistry, 16 (2006) 26.[12] W. Xia, J. Chang, Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method, Materials Letters 61 (2007) 3251.[13] R. Li, A.E. Clark, L.L. Hench, An investigation of Bioactive Glass Powders by Sol-Gel Processing, Transactions of 16th Annual Meeting of the Societey for Biomaterials, 12 (1990) 40.[14] J. Lao, J.M. Nedelec, P. Moretto, E. Jallot, Imaging physicochemical reactions occurring at the pore surface in binary bioactive glass foams by micro ion beam analysis, Applied Materials and Interfaces, 6 (2010) 1737.[15] A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A.H.S. Rebelo, J.M.F. Ferreira, Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglas, Acta Biomaterialia, 3 (2007) 255.[16] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Bioactive glass prepared by sol–gel emulsion, Journal of Non-Crystalline Solids, 355 (2009) 368.[17] O. Peital, E.D. Zanotto, L.L. Hench, Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics, Journal of Non-Crystalline Solids, 292 (2001) 115.[18] J. Liu, X. Miao, Sol-gel derived bioglass as a coating material for porous alumina scaffolds, Ceramics International, 30 (2004) 1781.[19] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27 (2006) 2907.[20] M. Dziadek, B. Zagrajczuk, P. Jelen, Z. Olejniczak, K.C. Kowalska, Structural variations of bioactive glasses obtained by different synthesis routes, Ceramics International, 42 (2016) 14700.[21] R. Lakshmi, V. Velmurugan and S. Sasikumar, Preparation and Phase Evolution of Wollastonite by Sol-Gel Combustion Method Using Sucrose as the Fuel, Combustion Science and Technology, 185 (2013) 1777.[22] G. Voicu, A. Bădănoiu, E. Andronescu1, C. M. Chifiruc, Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications, Central European Journal of Chemistry, 11 (2013) 1657.[23] M.V. Regi, Ceramics for medical applications, Journal of the Chemical Society, Dalton Transactions, 2 (2001) 97.[24] G. Voicu, A.I. Bădănoiu, E. Andronescu, C.M. Chifiruc, Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications, Central European Journal of Chemistry, 11 (2013) 1657.M. Wu, T. Wang, Y. Wang, F. Li, M. Zhou, X. Wu, A novel and facile route for synthesis of fine tricalcium silicate powders, Materials letters, 227 (2018), 187.


2020 ◽  
Author(s):  
Chao-Kuang Kuo ◽  
Liu-Gu Chen ◽  
Chun-Fu Tseng ◽  
Yu-Jen Chou

Abstract Bioactive glasses have received considerable attention in the fields of medical and material science and have been applied in applications such as bone implants, tooth fillings, and drug carriers due to their high bioactivity, biocompatibility and biodegradability. Numerous studies applying either conventional glass processes or the sol-gel method have employed Hench's protocol for the fabrication of bioactive glass. However, the effects of various acid catalysts when using spray pyrolysis to synthesize bioactive glass remain unclear. Therefore, in this study, we synthesized bioactive glass nanoparticles using spray pyrolysis and then treated them with the acid catalysts hydrochloric acid, lactic acid and acetic acid. By characterizing the phase information and morphologies of the bioactive glass particles and examining their bioactivity and cytotoxicity, we found that the bioactive glass treated with hydrochloric acid yielded greater cell viability than the lactic acid- and acetic acid-treated specimens; the corresponding mechanisms are discussed in this paper.


2015 ◽  
Vol 1107 ◽  
pp. 397-402
Author(s):  
H.J.M. Ridzwan ◽  
N.H. Jamil ◽  
S.A. Syamsyir ◽  
W.A.W. Razali

The bioactive glasses of SiO2-CaO-P2O5-SrO system have been prepared by a quick alkali mediated sol-gel method. The prepared bioactive glass of 1, 3, 5 wt% of SrO (coded: SR1, SR3, SR5, respectively) were characterized by SEM, XRD and FTIR. XRD pattern of all glasses calcined at 700°C in air confirmed that the calcined bioactive glass generally existed in amorphous state. The samples were immersed in simulated body fluid (SBF) to investigate the presence of hydroxyapatite (HA). All bioactive glass samples can induce the formation of hydroxyapatite (HA) as verified by SEM and XRD.


2015 ◽  
Vol 44 (30) ◽  
pp. 13592-13601 ◽  
Author(s):  
Xingzhong Guo ◽  
Rui Wang ◽  
Huan Yu ◽  
Yang Zhu ◽  
Kazuki Nakanishi ◽  
...  

Uniform spherical mesopores were successfully prepared by combining polymerization-induced phase separation with an epoxide-mediated sol–gel route.


2014 ◽  
Vol 631 ◽  
pp. 25-29
Author(s):  
S.S. Seyedmomeni ◽  
M. Naeimi ◽  
Majid Raz ◽  
J. Aghazadeh Mohandesi ◽  
F. Moztarzadeh

Various kinds of bioactive materials are developed as bone substitutes. Bioactive materials may affect attachment, proliferation and differentiation of cells and the subsequent integration in a host tissue. In this research 21%CaO–5%P2O5–64%SiO2–5%ZnO-5%B2O3and 16%CaO–5%P2O5–64%SiO2–5%ZnO-10%B2O3bioactive glasses were successfully synthesized by the sol–gel technique. Then the prepared bioactive glasses were soaked into simulated body fluid. Then the prepared samples were characterized using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). It was seen that addition of boron to the structure remarkably enhances the formation of hydroxyapatite on the surface of the bioactive glass and subsequently improves the bioactivity. The obtained results from SEM and XRD were in good agreement with each other. Besides, effect of boron on atomic arrangement of the prepared bioactive glass was studies and compared with previous researches. It was shown that by increasing the boron content, more crystalline domains would be observed.


2020 ◽  
Author(s):  
Reedwan Bin Zafar Auniq ◽  
Namon Hirun ◽  
Upsorn Boonyang

Bioactive glass ceramics (BGCs) have been used in orthopedic and dentistry due to having better osteoconductive and osteostimulative properties. This study aimed to evaluate and compare the drug release properties of two different BGCs; 45S5 and S53P4. The BGCs were composed with four phases of SiO2 – CaO – Na2O – P2O5 system, synthesized by sol–gel method using dual templates; a block-copolymer as mesoporous templates and polymer colloidal crystals as macroporous templates, called three-dimensionally ordered macroporous-mesoporous bioactive glass ceramics (3DOM-MBGCs). In vitro bioactivity test performed by soaking the 3DOM-MBGCs in simulated body fluid (SBF) at 37°C. The results indicated that, the 45S5 have the ability to grow hydroxyapatite-like layer on the surfaces faster than S53P4. Gentamicin drug was used to examine in vitro drug release properties in phosphate buffer solution (PBS). The amount of drug release was quantified through UV/Vis spectroscopy by using o-phthaldialdehyde reagent. S53P4 showed high drug loading content. The outcome of drug release in PBS showed that both S53P4 and 45S5 exhibited a slowly continuous gentamicin release. The resultant drug release profiles were fitted to the Peppas-Korsmeyer model to establish the predominant drug release mechanisms, which revealed that the kinetics of drug release from the glasses mostly dominated by Fickian diffusion mechanism.


Sign in / Sign up

Export Citation Format

Share Document