Experimental Study on Damping Characteristics of Piezoceramic Materials Shunted by Passive Electrical Circuits

2007 ◽  
Vol 280-283 ◽  
pp. 267-270 ◽  
Author(s):  
Shao Ze Yan ◽  
Fu Xing Zhang ◽  
Yang Min Li

Piezoelectric materials have an ability to efficiently transform mechanical energy to electric energy and vice versa, which makes them useful as structural dampers. The objective of this work is to investigate the damping capabilities of a piezoceramic shunted by different types of passive electrical circuits. The material properties of the shunted piezoceramic are modeled and the analytical results show that the shunted piezoceramic exhibits different damping potentials depending on the piezoelectric properties of the material and the shunt circuits. An experimental set-up of a cantilever beam with surface bonded piezoceramics is proposed to investigate the damping characteristics of the shunted piezoceramic. An analytical model is developed to describe the influence of the shunted piezoceramic on the dynamic response of the beam. The damping performances of the piezoceramic shunted by different circuits are compared respectively and the experimental results show approximate agreement with the numerical simulations of the model.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2698
Author(s):  
Ewa Klimiec ◽  
Halina Kaczmarek ◽  
Bogusław Królikowski ◽  
Grzegorz Kołaszczyński

Piezoelectric polymers characterized by flexibility are sought for applications in microelectronics, medicine, telecommunications, and everyday devices. The objective of this work was to obtain piezoelectric polymeric composites with a cellular structure and to evaluate their usefulness in practice. Composites based on polyolefins (isotactic-polypropylene and polyethylene) with the addition of aluminosilicate fillers were manufactured by extrusion, and then polarized in a constant electric field at 100 V/µm. The content of mineral fillers up to 10 wt% in the polymer matrix enhances its electric stability and mechanical strength. The value of the piezoelectric coefficient d33 attained ~150 pC/N in the range of lower stresses and ~80 pC/N in the range of higher stresses, i.e., at ~120 kPa. The materials exhibited high durability in time, therefore, they can be used as transducers of mechanical energy of the human motion into electric energy. It was demonstrated that one shoe insert generates an energy of 1.1 mJ after a person walks for 300 s. The miniaturized integrated circuits based on polyolefin composites may be applied for the power supply of portable electronics. Due to their high sensitivity, they can be recommended for measuring the blood pulse.


Author(s):  
Saeed Choopani ◽  
Mustafa Menderes Alyoruk

Abstract Piezoelectricity is a property of a material that converts mechanical energy into electrical energy or vice versa. It is known that group-III monochalcogenides, including GaS, GaSe, and InSe, show piezoelectricity in their monolayer form. Piezoelectric coefficients of these monolayers are the same order of magnitude as the previously discovered two-dimensional (2D) piezoelectric materials such as boron nitride (BN) and molybdenum disulfide (MoS2) monolayers. Considering a series of monolayer monochalcogenide structures including boron and aluminum (MX, M =B, Al, X = O, S, Se, Te), we design a series of derivative Janus structures (AlBX2, X = O, S, Se, Te). Ab-initio density functional theory (DFT) and density functional perturbation theory (DFPT) calculations are carried out systematically to predict their structural, electronic, electromechanical and phonon dispersion properties. The electronic band structure analysis indicate that all these 2D materials are semiconductors. The absence of imaginary phonon frequencies in phonon dispersion curves demonstrate that the systems are dynamically stable. In addition, this study shows that these materials exhibit outstanding piezoelectric properties. For AlBO2 monolayer with the relaxed-ion piezoelectric coefficients, d11=15.89(15.87) pm/V and d31=0.52(0.44) pm/V, the strongest piezoelectric properties were obtained. It has large in-plane and out-of-plane piezoelectric coefficients that are comparable to or larger than those of previously reported non-Janus monolayer structures such as MoS2 and GaSe, and also Janus monolayer structures including: In2SSe, Te2Se, MoSeTe, InSeO, SbTeI, and ZrSTe. These results, together with the fact that a lot of similar 2D systems have been synthesized so far, demonstrate the great potential of these materials in nanoscale electromechanical applications.


2018 ◽  
Vol 1 (1) ◽  
pp. 20 ◽  
Author(s):  
Quanlu Zhao ◽  
Juntao Zhao ◽  
Xiangfeng Tan

The so-called piezoelectric ceramic is a piezoelectric polycrystal, a functional ceramic material capable of inter-converting mechanical energy and electric energy. It belongs to inorganic nonmetallic materials. So far, the most widely used piezoelectric ceramic materials have both good piezoelectricity and ferroelectricity through the substitution and doping in a wide range to adjust its properties to meet the different needs of zirconium titanium lead (PZT) and its composite materials. Piezoelectric ceramic is also one of the prevailing piezoelectric materials, accounting for about 1/3 of the entire functional ceramic materials. It is mainly used for transducers, sensors, resonators and drives.


Author(s):  
T S Lee ◽  
H T Low ◽  
D T Nguyen ◽  
W R A Neo

An experimental set-up was introduced to study the dynamic behaviour of different types of check valves under pressure transient conditions. Three types of transient comparison methods were used, with similar results being obtained from all three methods. The experimental results show that the check valves with low inertia, assisted by springs or small travelling distance/angle, gave better performance under pressure transient conditions as compared to check valves without these features. Although different amounts of air entrainment were found to affect the experimental readings, the general characteristics of each check valve remain the same when compared between valves. This study can be applied to help in the choosing of suitable check valves for a particular pumping system.


2020 ◽  
Author(s):  
Hua Jin ◽  
Lina Jia ◽  
Xiaojuan Yin ◽  
Shilin Wei ◽  
Guiping Xu

Misinformation often continues to influence people’s cognition even after corrected (the ‘continued influence effect of misinformation’, the CIEM). This study investigated the role of information relevance in the CIEM by questionnaire survey and experimental study. The results showed that information with higher relevance to the individuals had a larger CIEM, indicating a role of information relevance in the CIEM. Personal involvement might explain the effects of information relevance on the CIEM. This study provides insightful clues for reducing the CIEM in different types of misinformation and misinformation with varying relevance.


i-Perception ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 204166952110211
Author(s):  
Claus-Christian Carbon

Wearing face masks in times of COVID-19 is one of the essential keystones for effectively decreasing the rate of new infections and thus for mitigating the negative consequences for individuals as well as for society. Acceptance of wearing masks is still low in many countries, making it extremely difficult to keep the pandemic at bay. In an experimental study, participants ( N = 88) had to assess how strange they felt when wearing a face mask while being exposed to displays of groups of varying numbers of mask wearers. Three different types of face masks were shown: simple homemade masks, FFP2 masks, and loop scarfs. The higher the frequency of people wearing masks in the displayed social group, the less strange the participants felt about themselves, an essential precondition for accepting wearing masks. This effect of a descriptive social norm was particularly effective when people saw others wearing less intrusive masks, here, simple homemade masks.


Author(s):  
Frowin Fasold ◽  
Benjamin Noël ◽  
André Nicklas ◽  
Fabian Lukac ◽  
Stefanie Klatt

Throwing a ball is a primary skill in team-handball and can be directly influenced by the properties of different types of balls. Therefore, the use of different balls (i.e., methodic ball) recommended by the handball federations (e.g., IHF) and the education guidelines, are important in teaching throwing. Previous studies have shown that movement patterns and throwing velocity can be influenced by different ball types and sizes. However, the influence of these factors on throwing accuracy has not been investigated in detail yet. This study aims to replicate the findings of previous studies on increasing throwing velocity in children by comparing the use of a soft methodic ball with a size 0 handball. Furthermore, this study investigates the influence of these balls on throwing accuracy. In an experimental study, participants (10-years of age) threw a soft methodic ball and a size 0 ball at target areas in a handball goal. For all the throws, throwing velocity and accuracy were measured. Commensurate with previous research, throwing velocity was higher for the soft methodic ball compared to a size 0 ball. No difference was found in accuracy, although, it is worth mentioning that the participants were only experienced in throwing using the size 0 ball. Moreover, only one-third of the children favored throwing with a size 0 ball, which is what they are used to in training and competition. The results of our study, therefore, confirm that using soft methodic balls additionally, positively influences the throwing velocity and has no negative effect on the accuracy in throwing among young handball beginners.


Sign in / Sign up

Export Citation Format

Share Document