Seismic Performance of In-Filled Steel-Concrete Composite Columns Using Fiber Analysis Method

2006 ◽  
Vol 326-328 ◽  
pp. 1821-1824 ◽  
Author(s):  
Jin Ho Kim ◽  
Tae Wook Kim

The study for cyclic load-displacement relationship and seismic characteristics of square Concrete-Filled Steel Tubular (CFT) columns is experimentally and analytically conducted. Nine CFT column specimens are tested under constant axial loading and monotonically increasing lateral loading. For predicting the strength and ductility of CFT columns, fiber analysis technique is used. The analytical results show reasonable agreement with experiment results and the moment capacity of CFT columns is predicted with reasonable accuracy using the fiber model. The influence of the steel tube on the lateral response of CFT columns is studied for the evaluation of seismic performance.

2019 ◽  
Vol 23 (4) ◽  
pp. 794-809
Author(s):  
Yong Yang ◽  
Xing Du ◽  
Yunlong Yu ◽  
Yongpu Pan

The ultra-high-strength concrete-encased concrete-filled steel tube column consists of a concrete-filled steel tube core and a rectangle-shaped reinforced concrete encasement. This article presents the seismic performance analysis of ultra-high-strength concrete-encased concrete-filled steel tube columns subjected to cyclic loading. Based on the measured load-lateral displacement hysteresis curves of six ultra-high-strength concrete-encased concrete-filled steel tube columns and two conventional RC columns, the seismic behaviours, such as the ductility, energy dissipation, stiffness and load-bearing capacity, were analysed. The effects of the arrangement of the stirrups and the layout of the prestressed steel strips on the seismic performance of the composite columns were critically examined. The test results indicated that the ductility and energy dissipation performance of the ultra-high-strength concrete-encased concrete-filled steel tube columns were increased by 74.8% and 162.7%, respectively, compared with the conventional columns. The configuration of the prestressed steel strip increased the ductility of the composite column by 28.9%–63% and increased the energy consumption performance by 160.2%–263.3%. By reducing the stirrup spacing and using prestressed steel strips, the concrete-filled steel tube core columns could be effectively confined, leading to a great enhancement in ductility, energy dissipation, stiffness and load-bearing capacity.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jianrong Pan ◽  
Peng Wang ◽  
Yanjun Zheng ◽  
Zhan Wang ◽  
Deming Liu

This paper presents the behavior of square concrete-filled tubular (CFT) columns with different penetrating gusset plates under axial load. Load transfer mechanism in the CFT columns including load distribution between gusset plate and core concrete and composite action of the gusset plate and steel tube was investigated. Experimental results showed that the axial load can be transferred from the bottom edge, ribs, and the hole of the gusset plate to core concrete through the bearing mechanism. Adding ribs or a hole on the gusset plate can efficiently facilitate load transmission and improve the composite action. Numerical models were established to determine the distribution of axial forces among members in the square CFT column. Then, revised coefficients of elastic modulus for the square CFT column with the gusset plate were proposed.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Ahmed A. M. AL-Shaar ◽  
Mehmet Tolga Göğüş

Self-compacting concrete-filled steel tube (SCCFST) beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST) beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control) SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3064
Author(s):  
Ahmed Al-Nini ◽  
Ehsan Nikbakht ◽  
Agusril Syamsir ◽  
Nasir Shafiq ◽  
Bashar S. Mohammed ◽  
...  

The concrete-filled double skin steel tube (CFDST) is a more viable option compared to a concrete-filled steel tube (CFST) due to consisting a hollow section, while degradation is enhanced simply by using carbon fiber-reinforced polymer (CFRP). Hence, the stabilization of a concrete’s ductile strength needs high- performance fiber-reinforced cementitious conmposite. This study investigates the behavior of high-performance fiber-reinforced cementitious composite-filled double-skin steel tube (HPCFDST) beams strengthened longitudinally with various layers, lengths, and configurtion of CFRP sheets. The findings showed that, with increased CFRP layers, the moment capacity and flexural stiffness values of the retrofitted HPCFDST beams have significantly improved. For an instant, the moment capacity of HPCFDST beams improved by approximately 28.5% and 32.6% when they were wrapped partially along 100% with two and three layers, respectively, compared to the control beam. Moreover, the moment capacity of the HPCFDST beam using two partial layers of CFRP along 75% of its sufficient length was closed to the findings of the beam with two full CFRP layers. For energy absorption, the results showed a vast disparity. Only the two layers with a 100% full length and partial wrapping showed increasing performance over the control. Furthermore, the typical failure mode of HPCFDST beams was observed to be local buckling at the top surface near the point of loading and CFRP rapture at the bottom of effect length.


2010 ◽  
Vol 163-167 ◽  
pp. 4194-4198
Author(s):  
Wen Liang Qiu ◽  
Meng Jiang ◽  
Le Zhou

A reinforced concrete column with inside concrete filled steel tube (RC-CFT) has many advantages over reinforced concrete (RC) column, such as higher compression, shear and moment capacity, higher ductility. So this kind of composite column has been used as frame column in buildings. In this paper, the composite columns are used as piers of a continuous bridge to improve the seismic performance. Using nonlinear time-history analysis method and fiber element model, considering elasto-plastic nonlinearity, the nonlinear relationships between lateral load and horizontal displacement of RC-CFT pier and RC pier are calculated, and the seismic behaviors of continuous bridges with the two types of piers are analyzed. Based on the comparison of the results, it is found that the ductility of RC-CFT pier is much larger than RC pier. Under the same intensity earthquakes, the damage of RC-CFT pier is less than the RC pier, and RC-CFT pier is more safe and easy to be repaired after earthquake.


Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


Sign in / Sign up

Export Citation Format

Share Document