Synthesis of Fine Nickel Powders by Solvothermal Method

2007 ◽  
Vol 334-335 ◽  
pp. 1145-1148 ◽  
Author(s):  
Yin Ye ◽  
Fang Li Yuan ◽  
Li Min Zhou ◽  
Hai Tao Huang

Fine nickel powders have been prepared by chemical reduction between nickel acetate and alcohol under solvothermal conditions. The effect of adding surfactant and varying solvent on the particle size of the as-synthesized nickel powders have been explored. SEM, XRD and TG were employed to characterize the size, morphology, crystalline structure and the thermal stability of the as-synthesized nickel powders. It is revealed that the FCC-structured nickel powders are of uniform spherical shape with good crystallinity and thermal stability. Typically, nickel powders with an average size of 300 nm were obtained at 200°C for 8 h using 0.04 mol/L solution of Ni(CH3COO)2·4H2O in n-butyl alcohol under solvothermal conditions.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 888
Author(s):  
Nguyen Thi Thanh Hai ◽  
Nguyen Duc Cuong ◽  
Nguyen Tran Quyen ◽  
Nguyen Quoc Hien ◽  
Tran Thi Dieu Hien ◽  
...  

Cu nanoparticles are a potential material for creating novel alternative antimicrobial products due to their unique antibacterial/antifungal properties, stability, dispersion, low cost and abundance as well as being economical and ecofriendly. In this work, carboxymethyl cellulose coated core/shell SiO2@Cu nanoparticles (NPs) were synthesized by a simple and effective chemical reduction process. The initial SiO2 NPs, which were prepared from rice husk ash, were coated by a copper ultrathin film using hydrazine and carboxymethyl cellulose (CMC) as reducing agent and stable agent, respectively. The core/shell SiO2@Cu nanoparticles with an average size of ~19 nm were surrounded by CMC. The results indicated that the SiO2@Cu@CMC suspension was a homogenous morphology with a spherical shape, regular dispersion and good stability. Furthermore, the multicomponent SiO2@Cu@CMC NPs showed good antifungal activity against Phytophthora capsici (P. capsici). The novel Cu NPs-based multicomponent suspension is a key compound in the development of new fungicides for the control of the Phytophthora disease.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
M. Z. Kassaee ◽  
F. Buazar ◽  
E. Motamedi

Arc-fabricated copper nanoparticles (Cu Nps) size, morphology and the crystalline structure, as well as the yields of Nps appear sensitive to the applied currents (50–160 A) in distilled water. The results indicate that the sizes of Cu Nps are directly proportional to the currents employed. At 50 A, TEM, XRD, and SEM analyses show fabrication of relatively purest, the most dispersed, face-centered cubic (fcc) brown Cu Nps with rather smallest average size of 20 nm. At the same current, the TGA-DTA analysis reveals neither weight loss nor gain, indicating thermal stability of the fabricated Cu Nps.


2017 ◽  
Vol 62 (3) ◽  
pp. 1923-1930 ◽  
Author(s):  
E.N. Kablov ◽  
O.G. Ospennikova ◽  
E.I. Kunitsyna ◽  
V.P. Piskorskii ◽  
D.V. Korolev ◽  
...  

AbstractMagnetic properties of powder (Pr,Dy)FeCoB ferrimagnetic alloys and effects of annealing, surface states were analyzed. X-ray photoelectron spectroscopy and Mössbauer spectra of powders indicate the effect of surface states on phase composition and magnetic properties of the studied powder, if particles average size is smaller than 10 μm. Effect of stoichiometry on magnetic anisotropy was found. Thermal stability of anisotropy field was proved by replacement of Fe atoms with Co atoms.


2021 ◽  
Author(s):  
Timothy Steenhaut ◽  
Séraphin Lacour ◽  
Gabriella Barozzino-Consiglio ◽  
Koen Robeyns ◽  
Robin Crits ◽  
...  

The first mesoporous bimetallic TiIII/Al metal-organic framework (MOF) containing amine functionalities on its linkers has been selectively obtained by converting the cheap commercially available (TiCl3)3AlCl3 into Ti3-xAlxCl3(THF)3 and reacting this complex with 2-aminoterephthalic acid in DMF under soft solvothermal conditions. This compound is structurally related to the previously described NH2-MIL-101(M) (M = Cr, Al and Fe) MOFs. Thermal gravimetric analyses and in situ PXRD measurements demonstrated that this highly air-sensitive TiIII-containing MOF is structurally stable up to 200°C. Nuclear magnetic resonance (NMR) spectroscopy, elemental and inductively-coupled plasma (ICP) analyses revealed that NH2-MIL-101(TiIII) contains trinuclear Ti3(μ3-O)Cl(DMF)2(RCOO)6 clusters with strongly bound DMF molecules, and a small amount of aluminum. Sorption experiments reveal a higher affinity of this MOF for hydrogen compared to the previously described monometallic unfunctionalized MIL-101(TiIII) MOF.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Hyo-Sub Kim ◽  
Dong-Hee Lee ◽  
Hong-Soon Kim ◽  
Chu-Sik Park ◽  
Young-Ho Kim

Hydrogen storage and release by the redox reaction of an iron oxide with yttria-stabilized zirconia (YSZ) were investigated. YSZ was introduced to the samples to improve the thermal stability of the iron oxide. The average size of the samples synthesized using urea was 40–50 nm, whereas those synthesized using Na2CO3as a precipitant were 150–200 nm. The sample prepared via coprecipitation using urea exhibited better stability than the other samples. We prepared the Cu-added Fe/YSZ sample to enhance the low-temperature reactivity. The water-splitting reaction was initiated at approximately 200°C, and the maximum rate of hydrogen evolution was observed at approximately 350°C. In the isothermal redox test over 35 cycles, the degree of hydrogen storage and release was almost maintained over 1.8 wt% based on the total amount of the sample.


2011 ◽  
Vol 239-242 ◽  
pp. 544-547
Author(s):  
Ling Ling Zhu ◽  
Pei Pei Xiao ◽  
Yi Tai Qian

In this study, papercut-like carbon sheets with an average size of about 20 nm in thickness have been successfully synthesized by the pyrolysis of tetrachloromethane and calcium carbide in an autoclave in 600 °C in the existence of alloy (Fe-Co-Ni). The X-ray powder diffraction (XRD) reveals amorphous carbon nature of the as-prepared sample. The thermal stability of the as-prepared sample was also studied.


2016 ◽  
Vol 69 (1) ◽  
pp. 41 ◽  
Author(s):  
Safyan A. Khan ◽  
Shahid Ali ◽  
Manzar Sohail ◽  
Mohamed A. Morsy ◽  
Zain H. Yamani

A simple chemical reduction approach was used to synthesize Ag nanoparticles (NPs) over a reputed photocatalyst, Degussa P25 (TiO2). Silver doping extended the P25 absorption wavelength from the ultraviolet to the visible region. The synthesized silver NPs (Ag NPs) were of spherical shape and had an average size of ~4.6 nm. In the next stage, Ag NPs were partially oxidized by treatment with hydrogen peroxide. The resulting P25/Ag/Ag2O nanocomposites were characterized by X-ray powder diffraction, transmission electron microscopy, energy dispersive X-ray analysis, Brunauer–Emmett–Teller analysis, and UV-visible spectroscopy. The photocatalytic activities of the P25, P25/Ag, and P25/Ag/Ag2O catalysts were investigated for the degradation of non-biodegradable dyes, methylene blue and rhodamine 6G. The P25/Ag/Ag2O nanocomposite exhibited better photodegradation activity than P25, as well as the commonly used Ag3PO4, under visible light irradiation.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Pham Van Viet ◽  
Hai Thi Nguyen ◽  
Thi Minh Cao ◽  
Le Van Hieu

We report on the process of synthesizing copper nanoparticles (Cu Nps) for a short reactive time by chemical reduction method with a support of CTAB reductive agent. Their properties were determined by ultraviolet-visible (UV-Vis) absorption spectrum, the X-ray (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and Transmission Electron Microscopy (TEM) images. The antifungal activity of Cu Nps was evaluated by testing againstFusariumsp. The Cu Nps were obtained with the average size in the range of 20–50 nm having spherical shape. The survey shows that when Cu Nps were used at 450 ppm concentration in 9-day incubation, 93.98% of fungal growth was inhibited.


1992 ◽  
Vol 263 ◽  
Author(s):  
K.-Josef Kramer ◽  
S. Talwar ◽  
K. H. Weiner ◽  
T. W. Sigmon

ABSTRACTHeteroepitaxy of Sil−xGex alloy layers on Si(100) and Si(111) has been achieved using Pulsed Laser Induced Epitaxy (PLIE). The energy of 1-50 pulses from a spatially homogenized XeCl excimer laser is used to melt a structure of electron beam evaporated Germanium on Silicon substrates. On Si(100) substrates alloys with Germanium fractions between 6 and 22% are investigated and exhibit very good crystallinity, as confirmed by MeV-Ion Channeling along the <100> - direction. Heteroepitaxy on Si(l11) yields similar results. MeV-Ion Channeling is also used to determine the level of strain in the layers. This is done by comparing angular yield curves around the <110> - direction for substrate and alloy layer. The obtained strain values are close to calculations for an ideally strained layer state. The strain is also measured for layers that have been subjected to different thermal cycles. As a result of this, predictions of feasibility for subsequent device fabrication can be made for the layers.


Sign in / Sign up

Export Citation Format

Share Document