Thermoelectric Properties of Bismuth Telluride Based Materials Prepared by Powder Metallurgy Processing

2007 ◽  
Vol 336-338 ◽  
pp. 864-867
Author(s):  
Wei Ren ◽  
Xue Quan Liu ◽  
Xiao Lin Wang ◽  
Hong Yi Jiang

Polycrystalline samples of Bi2Te3 based alloys were prepared by powder metallurgy processing including a melting-grinding and a sintering procedure of compacted pellets. Two sintering procedures as hot-pressing and spark plasma sintering (SPS) were employed. The thermoelectric properties and mechanical strength were measured in all case. Thermoelectric properties for p-type (Bi0.25Sb0.75)2Te3 and n-type Bi2(Te0.2Se0.8)3 changed with sintering temperature in both sintering methods. Mechanical strength and relative density increase with sintering temperature in two sintering procedures. The results firmly suggest that both sintering procedures are promising to obtain high performance thermoelectric materials.

2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


2014 ◽  
Vol 788 ◽  
pp. 329-333
Author(s):  
Rui Zhou ◽  
Xiao Gang Diao ◽  
Jun Chen ◽  
Xiao Nan Du ◽  
Guo Ding Yuan ◽  
...  

Effects of sintering temperatures on the microstructure and mechanical performance of SPS M3:2 high speed steel prepared by spark plasma sintering was studied. High speed steel sintering curve of continuous heating from ambient temperature to 1200°C was estimated to analyze the sintering processes and sintering temperature range. The sintering temperature within this range was divided into groups to investigate hardness, relative density and microstructure of M3:2 high-speed steel. Strip and quadrate carbides were observed inside the equiaxed grains. SPS sintering temperature at 900°C can lead to nearly full densification with grain size smaller than 20μm. The hardness and bending strength are higher than that of the conventionally powder metallurgy fabricated ones sintered at 1270°C. However, fracture toughness of the high speed steel is lower than that of the conventional powder metallurgy steels. This can be attributed to the shape and distribution of M6C carbides which reduce the impact toughness of high speed steels.


2006 ◽  
Vol 415 (1-2) ◽  
pp. 251-256 ◽  
Author(s):  
Satoru Furuyama ◽  
Tsutomu Iida ◽  
Shinsuke Matsui ◽  
Masayasu Akasaka ◽  
Keishi Nishio ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 1651-1654 ◽  
Author(s):  
Yu Kun Xiao ◽  
Zhi Xiang Li ◽  
Jun Jiang ◽  
Sheng Hui Yang ◽  
Ting Zhang ◽  
...  

P-type BiSbTe/RuO2 composite was fabricated using a combined process of melting and spark plasma sintering. The XRD patterns showed that RuO2 reacted with the matrix for the RuO2 content of 1.0 wt% and 4.0 wt% samples. The measured thermoelectric properties showed that the highest electrical conductivity was obtained for the sample with 2.0 wt% RuO2. The power factor (α2σ/κ) decreased with the increase of RuO2 below 450 K. The lattice thermal conductivity was lower than that of BiSbTe over the whole temperature range for BiSbTe/2.0 wt% RuO2.


Sign in / Sign up

Export Citation Format

Share Document